1,521 research outputs found

    Experiences of a motivational interview delivered by a robot: qualitative study

    Get PDF
    Background Motivational interviewing is an effective intervention for supporting behavior change but traditionally depends on face-to-face dialogue with a human counselor. This study addressed a key challenge for the goal of developing social robotic motivational interviewers: creating an interview protocol, within the constraints of current artificial intelligence, which participants will find engaging and helpful. Objective The aim of this study was to explore participants’ qualitative experiences of a motivational interview delivered by a social robot, including their evaluation of usability of the robot during the interaction and its impact on their motivation. Methods NAO robots are humanoid, child-sized social robots. We programmed a NAO robot with Choregraphe software to deliver a scripted motivational interview focused on increasing physical activity. The interview was designed to be comprehensible even without an empathetic response from the robot. Robot breathing and face-tracking functions were used to give an impression of attentiveness. A total of 20 participants took part in the robot-delivered motivational interview and evaluated it after 1 week by responding to a series of written open-ended questions. Each participant was left alone to speak aloud with the robot, advancing through a series of questions by tapping the robot’s head sensor. Evaluations were content-analyzed utilizing Boyatzis’ steps: (1) sampling and design, (2) developing themes and codes, and (3) validating and applying the codes. Results Themes focused on interaction with the robot, motivation, change in physical activity, and overall evaluation of the intervention. Participants found the instructions clear and the navigation easy to use. Most enjoyed the interaction but also found it was restricted by the lack of individualized response from the robot. Many positively appraised the nonjudgmental aspect of the interview and how it gave space to articulate their motivation for change. Some participants felt that the intervention increased their physical activity levels. Conclusions Social robots can achieve a fundamental objective of motivational interviewing, encouraging participants to articulate their goals and dilemmas aloud. Because they are perceived as nonjudgmental, robots may have advantages over more humanoid avatars for delivering virtual support for behavioral change

    Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis

    Get PDF
    © 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.We would like to acknowledge Freddy Frischknecht (Integrative Parasitology Center for Infectious Diseases, Heidelberg) for providing the Plasmodium berghei lisp2− parasite line, Immo Prinz (Hannover Medical School, Hannover) for providing genetically modified mouse lines, Ana Parreira (iMM-JLA, Portugal) and Geoff McFadden’s lab (School of BioSciences, University of Melbourne, Australia) for mosquito rearing and infection with Plasmodium parasites, Helena Pinheiro (iMM-JLA, Portugal) for assistance with graphical design, Inês Bento and Miguel Prudêncio for critically reviewing this manuscript, and the Flow Cytometry and Rodent Facilities teams (iMM-JLA, Portugal) for their assistance. Work at iMM-JLA was supported by Fundação para a Ciência e a Tecnologia. Portugal (PTDC/MED-IMU/28664/2017) and the “La caixa” Banking Foundation, Spain (HR17-00264-PoEMM) grants attributed to Â.F.C. and M.M.M., respectively. Work at the Department of Microbiology and Immunology, The University of Melbourne, Australia, was funded by the National Health and Medical Research Council, Australia (1113293, 1154457) and the Australian Research Council, Australia (CE140100011). Â.F.C., S.M., J.L.G., M.I.M., R.M.R., and K.S. were supported by Fundação para a Ciência e a Tecnologia, Portugal (DL57/2016/CP1451/CT0004, DL57/2016/CP1451/CT0010, PD/BD/139053/2018, PD/BD/135454/2017, PTDC/MAT-APL/31602/2017, and CEECIND/00697/2018, respectively), P.L. was supported by Conselho Nacional de Desenvolvimento Científico e Tenológico, Brazil (SN/CGEFO/CNPQ 201801/2015-9), and A.T.T. was supported in part by Alfred P. Sloan Foundation Fellowship (FG-2020-12949).info:eu-repo/semantics/publishedVersio

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Effect of neoadjuvant treatment with anastrozole on tumour histology in postmenopausal women with large operable breast cancer

    Get PDF
    Anastrozole is an orally active, non-steroidal aromatase inhibitor which appears effective as neoadjuvant treatment of breast cancer. Histological changes have been evaluated in biopsies from large, oestrogen-receptor rich, operable breast tumours in postmenopausal women following 12 weeks of neoadjuvant anastrozole treatment (1 mg (n=12) or 10 mg (n=11)). Of the 23 patients, 18 had a clinical response following treatment. Compared with pre-treatment biopsies anastrozole-treated specimens displayed decreased cellularity and/or increased fibrosis in 15 tumours; changes in gland formation, nuclear pleomorphism, or mitoses, in 12 cases; and a reduction in Mib1 score in all tumours. Marked changes in apoptotic scores were seen following treatment but the direction of effect was inconsistent. In all 17 tumours which were positive for progesterone receptors before therapy, treatment was associated with reduced staining for progesterone receptors. There was no consistent effect of treatment on oestrogen-receptor expression. It is concluded that neoadjuvant anastrozole treatment in this patient group has marked effects on tumour histopathology but these do not always correlate with clinical response
    corecore