7 research outputs found

    The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease

    In Vitro and In Vivo Biological Effects of Novel Arylimidamide Derivatives against Trypanosoma cruzi

    Get PDF
    ABSTRACT Chagas disease (CD), a neglected tropical disease caused by Trypanosoma cruzi , remains a serious public health problem in several Latin American countries. The available chemotherapies for CD have limited efficacy and exhibit undesirable side effects. Aromatic diamidines and arylimidamides (AIAs) have shown broad-spectrum activity against intracellular parasites, including T. cruzi . Therefore, our aim was to evaluate the biological activity of eight novel AIAs (16DAP002, 16SAB079, 18SAB075, 23SMB022, 23SMB026, 23SMB054, 26SMB070, and 27SMB009) against experimental models of T. cruzi infection in vitro and in vivo . Our data show that none of the compounds induced a loss of cellular viability up to 32 μM. Two AIAs, 18SAB075 and 16DAP002, exhibited good in vitro activity against different parasite strains (Y and Tulahuen) and against the two relevant forms of the parasite for mammalian hosts. Due to the excellent selective indexes of 18SAB075, this AIA was moved to in vivo tests for acute toxicity and parasite efficacy; nontoxic doses (no-observed-adverse-effect level [NOAEL], 50 mg/kg) were employed in the tests for parasite efficacy. In experimental models of acute T. cruzi infection, 18SAB075 reduced parasitemia levels only up to 50% and led to 40% protection against mortality (at 5 mg/kg of body weight), being less effective than the reference drug, benznidazole

    The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease

    The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2018-11-29T13:57:34Z No. of bitstreams: 1 patriciap_silva_etal_IOC_2010.pdf: 1034869 bytes, checksum: c644a3178c415cec63d104ddcd857555 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2018-11-29T14:04:31Z (GMT) No. of bitstreams: 1 patriciap_silva_etal_IOC_2010.pdf: 1034869 bytes, checksum: c644a3178c415cec63d104ddcd857555 (MD5)Made available in DSpace on 2018-11-29T14:04:31Z (GMT). No. of bitstreams: 1 patriciap_silva_etal_IOC_2010.pdf: 1034869 bytes, checksum: c644a3178c415cec63d104ddcd857555 (MD5) Previous issue date: 2010Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ. Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ. Brasil.University of North Carolina at Chapel Hill. Department of Pathology and Laboratory Medicine. Chapell Hill, NC, USA.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Celular. Rio de Janeiro, RJ. Brasil.Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease

    The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease
    corecore