78 research outputs found

    Energy of general 4-dimensional stationary axisymmetric spacetime in the teleparallel geometry

    Get PDF
    The field equation with the cosmological constant term is derived and the energy of the general 4-dimensional stationary axisymmetric spacetime is studied in the context of the hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR). We find that, by means of the integral form of the constraints equations of the formalism naturally without any restriction on the metric parameters, the energy for the asymptotically flat/de Sitter/Anti-de Sitter stationary spacetimes in the Boyer-Lindquist coordinate can be expressed as E=18π∫SdΞdϕ(sinΞgΞΞ+gϕϕ−(1/grr)(∂gΞΞgϕϕ/∂r))E=\frac{1}{8\pi}\int_S d\theta d\phi(sin\theta \sqrt{g_{\theta\theta}}+\sqrt{g_{\phi\phi}}-(1/\sqrt{g_{rr}})(\partial{\sqrt{g_ {\theta\theta} g_{\phi\phi}}}/\partial r)). It is surprised to learn that the energy expression is relevant to the metric components grrg_{rr}, gΞΞg_{\theta\theta} and gϕϕg_{\phi\phi} only. As examples, by using this formula we calculate the energies of the Kerr-Newman (KN), Kerr-Newman Anti-de Sitter (KN-AdS), Kaluza-Klein, and Cveti\v{c}-Youm spacetimes.Comment: 12 page

    Gravitational Energy of Kerr and Kerr Anti-de Sitter Space-times in the Teleparallel Geometry

    Full text link
    In the context of the Hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes.Comment: 11 pages, 1 figure, to appear in JHEP11(2003)00

    Os primórdios da organização do espaço territorial e da vila cearense: algumas notas

    Get PDF
    This paper presents, in outline, the action taken by economic agents, representatives of the Church and the Portuguese State in organizing the space of the Captaincy of CearĂĄ in the eighteenth century. The Portuguese State founded towns in strategic locations for better capitalization of the cattle breeder economy, where first settled sesmeiros and the Church. There was no reason or justification of geopolitical nature that demanded technical and financial investments by the Portuguese in the full adequacy of the local conditions to Portuguese urban guidelines. In the face of the late occupation, the article also discusses the late cartographic representation as expressing the lack of interests of the Portuguese administration in relation to a fuller understanding of the region

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • 

    corecore