98 research outputs found

    The neuromuscular activity of Micrurus pyrrhocryptus venom and its neutralization by commercial and specific coral snake antivenoms

    Get PDF
    The neuromuscular activity ofMicrurus pyrrochryptus venom was studied in chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations. The venom (0.5-50μg/ml) caused irreversible, time- and concentration-dependent blockade, with BC being more sensitive than PND (50% blockade with 10μg/ml in 22±;3min and 62±4min, respectively; mean±SEM, n=6; p<0.05). In BC preparations, venom (0.5μg/ml) progressively abolished ACh-induced contractures, whereas contractures to exogenous KCl and muscle twitches in curarized preparations were unaffected. The venom neither altered creatine kinase release (venom: 25.8±1.75IU/l vs control: 24.3±2.2IU/l, n=6, after 120min), nor it caused significant muscle damage (50μg of venom/ml vs control: 3.5±0.8% vs 1.1±0.7% for PND; 4.3±1.5% vs 1.2±0.5% for BC, n=5). The venom had low PLA2 activity. Neurotoxicity was effectively neutralized by commercial Micrurus antivenom and specific antivenom. These findings indicate that M. pyrrhocryptus venom acts postsynaptically on nicotinic receptors, with no significant myotoxicity

    Expression Of Vegf And Flk-1 And Flt-1 Receptors During Blood-brain Barrier (bbb) Impairment Following Phoneutria Nigriventer Spider Venom Exposure.

    Get PDF
    Apart from its angiogenic and vascular permeation activity, the vascular endothelial growth factor (VEGF) has been also reported as a potent neuronal protector. Newborn rats with low VEGF levels develop neuron degeneration, while high levels induce protective mechanisms in several neuropathological conditions. Phoneutria nigriventer spider venom (PNV) disrupts the blood-brain barrier (BBB) and causes neuroinflammation in central neurons along with excitotoxic signals in rats and humans. All these changes are transient. Herein, we examined the expression of VEGF and its receptors, Flt-1 and Flk-1 in the hippocampal neurons following envenomation by PNV. Adult and neonatal rats were evaluated at time limits of 2, 5 and 24 h. Additionally, BBB integrity was assessed by measuring the expression of occludin, β-catenin and laminin and neuron viability was evaluated by NeuN expression. VEGF, Flt-1 and Flk-1 levels increased in PNV-administered rats, concurrently with respective mRNAs. Flt-1 and Flk-1 immunolabeling was nuclear in neurons of hippocampal regions, instead of the VEGF membrane-bound typical location. These changes occurred simultaneously with the transient decreases in BBB-associated proteins and NeuN positivity. Adult rats showed more prominent expressional increases of the VEGF/Flt-1/Flk-1 system and earlier recovery of BBB-related proteins than neonates. We conclude that the reactive expressional changes seen here suggest that VEGF and receptors could have a role in the excitotoxic mechanism of PNV and that such role would be less efficient in neonate rats.52572-8

    Sildenafil (viagra) Protective Effects On Neuroinflammation: The Role Of Inos/no System In An Inflammatory Demyelination Model.

    Get PDF
    We recently demonstrated that sildenafil reduces the expression of cytokines, COX-2, and GFAP in a demyelinating model induced in wild-type (WT) mice. Herein, the understandings of the neuroprotective effect of sildenafil and the mediation of iNOS/NO system on inflammatory demyelination induced by cuprizone were investigated. The cerebella of iNOS(-/-) mice were examined after four weeks of treatment with cuprizone alone or combined with sildenafil. Cuprizone increased GFAP, Iba-1, TNF- α , COX-2, IL-1 β , and IFN- γ expression, decreased expression of glutathione S-transferase pi (GSTpi), and damaged myelin in iNOS(-/-) mice. Sildenafil reduced Iba-1, IFN- γ , and IL-1 β levels but had no effect on the expression of GFAP, TNF- α , and COX-2 compared to the cuprizone group. Sildenafil elevated GSTpi levels and improved the myelin structure/ultrastructure. iNOS(-/-) mice suffered from severe inflammation following treatment with cuprizone, while WT mice had milder inflammation, as found in the previous study. It is possible that inflammatory regulation through iNOS-feedback is absent in iNOS(-/-) mice, making them more susceptible to inflammation. Sildenafil has at least a partial anti-inflammatory effect through iNOS inhibition, as its effect on iNOS(-/-) mice was limited. Further studies are required to explain the underlying mechanism of the sildenafil effects.201332146

    Bp-13 Pla2: Purification And Neuromuscular Activity Of A New Asp49 Toxin Isolated From Bothrops Pauloensis Snake Venom.

    Get PDF
    A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°-45°C. Full Bp-13 PLA2 activity required Ca(2+); its PLA2 activity was inhibited by Mg(2+), Mn(2+), Sr(2+), and Cd(2+) in the presence and absence of 1 mM Ca(2+). In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.201582605

    Triggering of protection mechanism against Phoneutria nigriventer spider venom in the brain

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORSevere accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.Severe accidents caused by the “armed” spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and th99113FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR07/50242-6; 07/50272-6; 07/56715-781316/2008-6; 504732/2007-2; 305099/2011-6sem informaçã
    corecore