4,121 research outputs found

    Experimental tests of small-x QCD

    Get PDF
    Current and future experimental studies of the high-energy limit of QCD, dominated by non-linear gluon dynamics in the low-x sector of the hadron wavefunctions, are presented. Results at HERA (proton) and RHIC (nucleus) pointing to the possible onset of parton saturation phenomena, and perspectives at the LHC and new proposed DIS facilities are outlined.Current and future experimental studies of the high-energy limit of QCD, dominated by non-linear gluon dynamics in the low-x sector of the hadron wavefunctions, are presented. Results at HERA (proton) and RHIC (nucleus) pointing to the possible onset of parton saturation phenomena, and perspectives at the LHC and new proposed DIS facilities are outlined

    Forward Physics at the LHC

    Get PDF
    Small-angle detectors at the LHC give access to a broad physics programme within and beyond the Standard Model (SM). We review the capabilities of ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM for forward physics studies in various sectors: soft and hard diffractive processes, exclusive Higgs production, low-x QCD, ultra-high-energy cosmic-rays, and electro-weak measurementsSmall-angle detectors at the LHC give access to a broad physics programme within and beyond the Standard Model (SM). We review the capabilities of ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM for forward physics studies in various sectors: soft and hard diffractive processes, exclusive Higgs production, low-x QCD, ultra-high-energy cosmic-rays, and electro-weak measurements

    Electromagnetic Probes in PHENIX

    Get PDF
    Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.Comment: 8 pages, 9 postscript figures, to be published in the Proceedings of the Hard Probes 2006 conference (June 9-16, 2006, Asilomar, CA

    Physics at the LHC: a short overview

    Get PDF
    The CERN Large Hadron Collider (LHC) started operation a few months ago. The machine will deliver proton-proton and nucleus-nucleus collisions at energies as high as sqrt(s)=14 TeV and luminosities up to L~10^{34} cm^{-2}s^{-1}, never reached before. The main open scientific questions that the seven LHC experiments -- ATLAS, CMS, ALICE, LHCb, TOTEM, LHCf and MOEDAL -- aim to solve in the coming years are succinctly reviewed.Comment: 9 pages, 16 plots. Invited review talk Hot-Quarks 2010, La Londe-Les-Maures, July 2010. J. Phys. Conf. Ser. 270, 012001 (2011). Minor typos correcte

    Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics

    Full text link
    We discuss three different cases of hard inclusive spectra in proton-proton collisions: high pTp_T single hadron production at s\sqrt{s}\approx 20 GeV and at s\sqrt{s} = 62.4 GeV, and direct photon production at s\sqrt{s} = 200 GeV; with regard to their relevance for the search of Quark Gluon Plasma signals in A+A collisions at SPS and RHIC energies.Comment: Proceeds. Hot Quarks 2004 Int. Workshop on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions. 26 pages. 26 figs. [minor corrs., refs. added

    First performance studies of a prototype for the CASTOR forward calorimeter at the CMS experiment

    Get PDF
    We present results on the performance of the first prototype of the CASTOR quartz-tungsten sampling calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. This study includes GEANT Monte Carlo simulations of the Cherenkov light transmission efficiency of different types of air-core light guides, as well as analysis of the calorimeter linearity and resolution as a function of energy and impact-point, obtained with 20-200 GeV electron beams from CERN/SPS tests in 2003. Several configurations of the calorimeter have been tested and compared, including different combinations of (i) structures for the active material of the calorimeter (quartz plates and fibres), (ii) various light-guide reflecting materials (glass and foil reflectors) and (iii) photodetector devices (photomultipliers and avalanche photodiodes)

    High-precision αs\alpha_s measurements from LHC to FCC-ee

    Full text link
    This document provides a writeup of all contributions to the workshop on "High precision measurements of αs\alpha_s: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling αs\alpha_s from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) τ\tau decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in e±e^\pmp DIS and γ\gamma-p photoproduction, (ix) photon structure function in γ\gamma-γ\gamma, (x) event shapes and (xi) jet cross sections in e+ee^+e^- collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in e+ee^+e^- collisions at the Future Circular Collider (FCC-ee) with O\cal{O}(1--100 ab1^{-1}) integrated luminosities yielding 1012^{12} Z bosons and jets, and 108^{8} W bosons and τ\tau leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, αs(mZ)\alpha_s(m_Z) = 0.1177 ±\pm 0.0013, is about 1\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the αs\alpha_s uncertainty should be possible, mostly thanks to the huge Z and W data samples available.Comment: 135 pages, 56 figures. CERN-PH-TH-2015-299, CoEPP-MN-15-13. This document is dedicated to the memory of Guido Altarell

    Photoproduction at collider energies: from RHIC and HERA to the LHC

    Get PDF
    We present the mini-proceedings of the workshop on ``Photoproduction at collider energies: from RHIC and HERA to the LHC'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-xx QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde
    corecore