48 research outputs found

    DETERMINATION OF INERTIA ELEMENTS FOR THE LOWER LIMBS

    Get PDF
    INTRODUCTION: For kinematic and dynamic studies of the lower limbs, using a three dimensional model is useful. Such models allow one to determine segment movements and forces acting on joints. Inverse Dynamic Analysis can be used to calculate the biomechanical loads applied (Elftman,1939). The reliability of the results depends on the degree of accuracy of the kinematic and anthropometric data (Kingma et al.,1996).The purpose of this paper is to explain a simple way to determine inertia elements of the lower limbs using anthropometric data available in the literature. METHODS: Body mass and stature are the only anthropometric parameters known for a subject. Body segment inertia parameters are obtained from cadavers and we use here de Leva (1996) segmental data for males to perform our calculations. We consider each segment of the lower limb (foot, shank and thigh) as rigid and independent. The model supposes a knowledge of the relative mass and the spatial coordinates of at least three points for each segment. A mathematical method is developed in order to obtain data which take into account the individual characteristics of the subjects. For each segment we have to determine three successive elements:- the localization of the center of mass,- a coordinate system assigned, - an inertia matrix assigned. RESULTS: The main difficulty is to place the markers properly on subjects. A simple test, allowing distance determination between markers, was proposed previously to further calculations. The mathematical model is developed in such a way as to be easily used. Conclusions: These simple-to-use methods presuppose a reducing hypothesis. We assume that for each joint a geometrical center exists. This point lies on the longitudinal axis of the segments and has a fixed three dimensional position relative to the segments forming the joint. The localization of the ‘joint center’ is not referenced to the sagittal and transversal axis. We use data reported by de Leva (1996). This supposes that the lower limb is a standard limb, reducing accuracy for subjects with some pathological segment orientation or for young, old and female subjects. As the error introduced by using inappropriate segment parameters could be substantial, the choice of the biomechanical model, as well as the optimal measurement method, is absolutely necessary to obtain for example a good evaluation of the forces acting on the different joints

    SPINE MOVEMENT DURING HALF SQUAT EXERCISE

    Get PDF
    INTRODUCTION .Postural variations of the spine can be studied using radiological technique, but in order to minimize the ionizing radiation we suggested previously to use a non-invasive method. The aim of this study is to describe the movement of the different vertebral segments during half squat exercise. MATEFUAL AND METHOD As described previously external markers are glued to the projecting contours of the spinous processes on 20 voluntary subjects (10 males, 10 females). Markers were implanted on T7, T12, L1, L3, L5 and S1 vertebra levels. This technique was designed to locate angular displacement. Three positions were studied: neutral (vertical trunk, without additional charge), in charge (vertical trunk + 50 kg) and half squat with 50 kg on the shoulders. From the photos were measured, in the sagittal plane, the angular variations at each vertebral segment. RESULTS In standing position the barbell weight induces a general flexion on the cervical and thoracic levels. A verticalization of S1 with an extension of L5 is noticed. In squat position, the main displacement occurs in S1 according to the important movement of the coxo-femoral joint. L5 remains in a constant position. An important flexion is noticed in L3 and L1. T12 seems well fixed. T7 angulation is dependent of head position and of general trunk flexion. DISCUSSION In physical training session emphasis should be laid on the voluntary development of muscles surrounding pelvis, but also of muscles allowing the fixation of thoraco-lumbar joint

    MECHANICAL STRESS ON KNEES DURING HALF-SQUAT EXERCISES

    Get PDF
    INTRODUCTION Articular forces and moments have been found to be affected by the lifting technique in ergonomics (Trafirnow et al., 1993) and in weight-training (Poumarat et al.,1989).While these researchers have improved our understanding of biomechanical aspects of lifting as related to the spine and the lower extremities, most of them remain related to either static orquasi-static conditions. The purpose of this study was to determine the mechanical stress on the knee joint using a 3-D dynamic model. MATERIALS AND METHODS Three male volunteer students participated in the study. They were asked to perform three different sets of 10 half-squat exercises: no load, 100% and 120% of total body mass of the subject additional weight. To determine kinematic data, the movement of the half-squat exercises was recorded using the Mac Reflex optoelectronic system (4 cameras) with markers on the left lower extremity at the fust metatarsal, the external rnalleolus, the external lateral femoral condyle and the greater trochanter. A six components force-plate (AMTI) provided kinetic data. Compressive and the shear forces acting on the thigh at the knee joint were calculated where; Fx represents the compressive force; Mx, the external rotatory moment of the thigh; Fy, the medio-lateral shear force; My, the extension moment of the thigh; Fz, the antero-posterior shear force; and Mz, the abductor moment of the thigh. The resultant knee force, in all subjects, increases when lifted load increases. A similar increase in the resultant moment at the knee joint was found. These pic values were calculated for a knee angle of 108. The medio-lateral shear force (Fy) was not affected by the load. However, during the middle phase of the exercise, the mtero-posterior shear force increased from 0.72 to 0. 88 times body weight when lifted mass increased from 1 to 1.20 times body weight. For the compressive component (Fx), no clear variation as a function of load was found in this study in all subjects. Even for the heaviest load (120% body weight), no increase in forces and moments was recorded from the first to the last repetition of one set. CONCLUSION The results of this study demonstrated that mechanical stress acting on knee joint in half-squat exercise increased with lifted barbell. For knee force components, load was found to affect only the antero-posterior shear force. The medio-lateral shear force was independent of this variable. Force and moment values were affected by REFERENCES Poumarat, G., Dabonneville, M., Chandezon, R., & Roddier, P. (1989). Les squats: Forces induites sur I'articulation du genou et sur L5 S 1 en fonction des postures adoptCes. CinCsiologie, 69-74. Trafimow, J.H., Schipplein, O.D., Novak, G.H.,& Andersson, G.B.J. (1993). The effects ofquadriceps fatigue on the technique of lifting. Spine, 18,364-367

    FORCES APPLIED BY A BACKPACK ON THE SHOULDERS

    Get PDF
    INTRODUCTION While the physiological responses of individuals to load carrying have been studied (Bloom et al. 1987; Evans et al. 1983), there is still a lack of information in biomecanics research focused on the forces applied to the trunk and the shoulders. The aim of this work is to present a way of measuring forces applied by a backpack to the shoulders when the subject walks for 30 min on a treadmill. MATERIALS AND METHODS Twelve subjects volunteered to participate in the experiment, four were hikers (>20 trekking/year: expert), four were occasional hikers

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    Photonic bandgaps for grating-coupled waveguide modes with a silver tunnel barrier

    Get PDF
    Copyright © 2007 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 9, article 251. DOI: 10.1088/1367-2630/9/8/251The optical properties of a periodically modulated photoresist waveguide structure has been explored using the Kretschmann–Raether configuration with a thin silver tunnel barrier. A detailed experimental study of how wavelength-scale periodic texture modifies the dispersion of the guided modes in the visible range for a wide range of azimuthal angles is presented. Fitting the observed in-plane momenta of the modes to predictions from a multilayer, multishape differential grating theory model allows the identities of each of the modes to be confirmed. In addition, the intensities obtained experimentally are compared favourably with those predicted from a theoretical model. Such a waveguide structure can produce not only the photonic bandgaps at the Brillouin zone boundary, but also bandgaps within the Brillouin zone caused by the Bragg scattered guided modes anti-crossing with the unscattered modes. All of these photonic bandgaps have potential applications controlling spontaneous emission in devices

    CdSe-single-nanoparticle based active tips for near-field optical microscopy

    Get PDF
    We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source

    Surface plasmon polaritons on thin-slab metal gratings

    Get PDF
    Ian R. Hooper and J. Roy Sambles, Physical Review B, Vol. 67, article 235404 (2003). "Copyright © 2003 by the American Physical Society."In a recently published paper [U. Schröter and D. Heitmann, Phys. Rev. B 60, 4992 (1999)] an unexpected result occurred when light was incident upon a periodically corrugated thin metal film when the corrugations on the two interfaces were identical and in phase with each other. It was observed that it was not possible to excite the surface plasmon polariton on the metal surface facing away from the incoming light, and they ascribed this to the lack of a thickness variation within the metal. In this paper a somewhat different interpretation of their results is presented, which shows that the surface plasmon polariton (SSP) is in fact very weakly excited on the transmission side of such structures. It is explained why this coupling is so weak in terms of the cancellation of the evanescent diffracted orders from the two diffractive surfaces and how, by changing the phase between the grating on either surface, this coupling becomes much stronger. An explanation for the observation that SPP excitation on such structures may lead to either transmission maxima or minima is also presented

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Surface plasmon polaritons on narrow-ridged short-pitch metal gratings

    Get PDF
    Ian R. Hooper and J. Roy Sambles, Physical Review B, Vol. 66, article 205408 (2002). "Copyright © 2002 by the American Physical Society."The reflectivity of short pitch metal gratings consisting of a series of narrow Gaussian ridges in the classical mount has been modeled as a function of frequency and in-plane wave vector (the plane of incidence containing the grating vector) for various ridge heights. Surface plasmon polaritons (SPP’s) are found to be excited even in the zero-order region of the spectrum. These may result in strong absorption of radiation polarized with its electric field in the plane of incidence (transverse magnetic). For zero in-plane wave vector the SPP modes consist of a symmetric charge distribution on either side of the grating ridges, a family of these modes existing with different numbers of field maxima per grating period. Because of the charge symmetry these modes may only be coupled to at angles away from normal incidence where strong resonant absorption may then occur. The dispersion of these SPP modes as a function of the in-plane wave vector is found to be complex arising from the formation of very large band gaps due to the harmonic content of the grating profile, the creation of a pseudo high-energy mode, and through strong interactions between different SPP bands
    corecore