9 research outputs found

    Prolactin-signal transduction in neonatal rat pancreatic islets and interaction with the insulin-signaling pathway

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICODuring pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats355282289FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçãosem informaçã

    Disruption Of Metabolic Pathways - Perspectives For The Treatment Of Cancer

    No full text
    Several growth-promoting signaling pathways have tight molecular connections with metabolic-related signal transduction systems. By controlling these pathways, cancer cells gain autonomy over energy-acquiring systems and, thus, expand their potential for proliferation. Here, we discuss the use of drug and antisense oligonucleotide approaches to inhibit metabolic pathways in cancer cells and their potential use in the therapeutics of cancer. © 2006 Bentham Science Publishers Ltd.617787Gough, N.R., Ray, L.B., Mapping cellular signaling (2002) Sci. STKE, pp. EG8Levchenko, A., Computational cell biology in the post-genomic era (2001) Mol. Biol. Rep., 28, pp. 83-89Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yan, C., The sequence of the human genome (2001) Science, 291, pp. 1304-1351Kolch, W., Calder, M., Gilbert, D., When kinases meet mathematics, the systems biology of MAPK signalling (2005) FEBS Lett., 579, pp. 1891-1895Whitman, M., Downes, C.P., Keeler, M., Keller, T., Cantley, L., Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate (1988) Nature, 332, pp. 644-646Talmage, D.A., Freund, R., Young, A.T., Dahl, J., Dawe, C.J., Benjamin, T.L., Phosphorylation of middle T by pp60c-src, a switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis (1989) Cell, 59, pp. 55-65Jones, P.F., Jakubowicz, T., Pitossi, F.J., Maurer, F., Hemmings, B.A., Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 4171-4175Franke, T.F., Yang, S.I., Chan, T.O., Datta, K., Kazlauskas, A., Morrison, D.K., Kaplan, D.R., Tsichlis, P.N., The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase (1995) Cell, 81, pp. 727-736Fruman, D.A., Meyers, R.E., Cantley, L.C., Phosphoinositide kinases (1998) Ann. Rev. Biochem., 67, pp. 481-507Cantley, L.C., The phosphoinositide 3-kinase pathway (2002) Science, 296, pp. 1655-1657Klarlund, J.K., Guilherme, A., Holik, J.J., Virbasius, J.V., Chawla, A., Czech, M.P., Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains (1997) Science, 275, pp. 1927-1930Scharenberg, A.M., El-Hillal, O., Fruman, D.A., Beitz, L.O., Li, Z., Lin, S., Gout, I., Kinet, J.P., Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway, a target for SHIP-mediated inhibitory signals (1998) EMBO J., 17, pp. 1961-1972Tanti, J.F., Grillo, S., Gremeaux, T., Coffer, P.J., Van Obberghen, E., Le Marchand-Brustel, Y., Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes (1997) Endocrinology, 138, pp. 2005-2010Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Greenberg, M.E., Regulation of neuronal survival by the serine-threonine protein kinase Akt (1997) Science, 275, pp. 661-665Kohn, A.D., Summers, S.A., Birnbaum, M.J., Roth, R.A., Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation (1996) J. Biol. Chem., 271, pp. 31372-31378Bellacosa, A., Testa, J.R., Staal, S.P., Tsichlis, P.N., A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region (1991) Science, 254, pp. 274-277Cheng, J.Q., Godwin, A.K., Bellacosa, A., Taguchi, T., Franke, T.F., Hamilton, T.C., Tsichlis, P.N., Testa, J.R., AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/ threonine kinases, is amplified in human ovarian carcinomas (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 9267-9271Brodbeck, D., Cron, P., Hemmings, B.A., A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain (1999) J. Biol. Chem., 274, pp. 9133-9136Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G.F., Holmes, A.B., Gaffney, P.R., Hawkins, P.T., Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B (1998) Science, 279, pp. 710-714Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., Dedhar, S., Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 11211-11216Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., Hemmings, B.A., Mechanism of activation of protein kinase B by insulin and IGF-1 (1996) EMBO J., 15, pp. 6541-6551Williams, M.R., Arthur, J.S., Balendran, A., Van Der Kaay, J., Poli, V., Cohen, P., Alessi, D.R., The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells (2000) Curr. Biol., 10, pp. 439-448Feng, J., Park, J., Cron, P., Hess, D., Hemmings, B.A., Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase (2004) J. Biol. Chem., 279, pp. 41189-41196Sarbassov, D.D., Guertin, D.A., Ali, S.M., Sabatini, D.M., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex (2005) Science, 307, pp. 1098-1101Hanada, M., Feng, J., Hemmings, B.A., Structure, regulation and function of PKB/AKT - A major therapeutic target (2004) Biochim. Biophys. Acta, 1697, pp. 3-16Alessi, D.R., Caudwell, F.B., Andjelkovic, M., Hemmings, B.A., Cohen, P., Molecular basis for the substrate specificity of protein kinase Bcomparison with MAPKAP kinase-1 and p70 S6 kinase (1996) FEBS Lett., 399, pp. 333-338Obata, T., Yaffe, M.B., Leparc, G.G., Piro, E.T., Maegawa, H., Kashiwagi, A., Kikkawa, R., Cantley, L.C., Peptide and protein library screening defines optimal substrate motifs for AKT/PKB (2000) J. Biol. Chem., 275, pp. 36108-36115Staal, S.P., Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2, amplification of AKT1 in a primary human gastric adenocarcinoma (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 5034-5037Del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., Nunez, G., Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt (1997) Science, 278, pp. 687-689Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., Greenberg, M.E., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery (1997) Cell, 91, pp. 231-241Downward, J., How BAD phosphorylation is good for survival (1999) Nat. Cell Biol., 1, pp. E33-E35Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S., Reed, J.C., Regulation of cell death protease caspase-9 by phosphorylation (1998) Science, 282, pp. 1318-1321Trencia, A., Perfetti, A., Cassese, A., Vigliotta, G., Miele, C., Oriente, F., Santopietro, S., Beguinot, F., Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action (2003) Mol. Cell. Biol., 23, pp. 4511-4521Kim, A.H., Khursigara, G., Sun, X., Franke, T.F., Chao, M.V., Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1 (2001) Mol. Cell. Biol., 21, pp. 893-901Barthwal, M.K., Sathyanarayana, P., Kundu, C.N., Rana, B., Pradeep, A., Sharma, C., Woodgett, J.R., Rana, A., Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival (2003) J. Biol. Chem., 278, pp. 3897-3902Rena, G., Guo, S., Cichy, S.C., Unterman, T.G., Cohen, P., Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B (1999) J. Biol. Chem., 274, pp. 17179-17183Biggs III, W.H., Meisenhelder, J., Hunter, T., Cavenee, W.K., Arden, K.C., Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 7421-7426Wolfrum, C., Besser, D., Luca, E., Stoffel, M., Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 11624-11629Burgering, B.M., Medema, R.H., Decisions on life and death, FOXO Forkhead transcription factors are in command when PKB/Akt is off duty (2003) J. Leukoc. Biol., 73, pp. 689-701Jones, R.G., Parsons, M., Bonnard, M., Chan, V.S., Yeh, W.C., Woodgett, J.R., Ohashi, P.S., Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo (2000) J. Exp. Med., 191, pp. 1721-1734Du, K., Montminy, M., CREB is a regulatory target for the protein kinase Akt/PKB (1998) J. Biol. Chem., 273, pp. 32377-32379Pekarsky, Y., Hallas, C., Palamarchuk, A., Koval, A., Bullrich, F., Hirata, Y., Bichi, R., Croce, C.M., Akt phosphorylates and regulates the orphan nuclear receptor Nur77 (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 3690-3694Lin, H.K., Yeh, S., Kang, H.Y., Chang, C., Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 7200-7205Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., Downward, J., Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis (2003) Mol. Cell, 11, pp. 11-23Zhou, B.P., Liao, Y., Xia, W., Spohn, B., Lee, M.H., Hung, M.C., Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells (2001) Nat. Cell Biol., 3, pp. 245-252Li, Y., Dowbenko, D., Lasky, L.A., AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival (2002) J. Biol. Chem., 277, pp. 11352-11361Viglietto, G., Motti, M.L., Bruni, P., Melillo, R.M., D'Alessio, A., Califano, D., Vinci, F., Santoro, M., Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer (2002) Nat. Med., 8, pp. 1136-1144Shin, I., Yakes, F.M., Rojo, F., Shin, N.Y., Bakin, A.V., Baselga, J., Arteaga, C.L., PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization (2002) Nat. Med., 8, pp. 1145-1152Mayo, L.D., Donner, D.B., A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 11598-11603Okumura, E., Fukuhara, T., Yoshida, H., Hanada Si, S., Kozutsumi, R., Mori, M., Tachibana, K., Kishimoto, T., Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition (2002) Nat. Cell Biol., 4, pp. 111-116Zhang, R., Wang, H., Agrawal, S., Novel antisense anti-MDM2 mixed-backbone oligonucleotides, proof of principle, in vitro and in vivo activities, and mechanisms (2005) Curr. Cancer Drug Targets, 5, pp. 43-49Buolamwini, J.K., Addo, J., Kamath, S., Patil, S., Mason, D., Ores, M., Small molecule antagonists of the MDM2 oncoprotein as anticancer agents (2005) Curr. Cancer Drug Targets, 5, pp. 57-68Saltiel, A.R., Kahn, C.R., Insulin signalling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806White, M.F., IRS proteins and the common path to diabetes (2002) Am. J. Physiol. Endocrinol. Metab., 283, pp. E413-E422Mauvais-Jarvis, F., Kahn, C.R., Understanding the pathogenesis and treatment of insulin resistance and type 2 diabetes mellitus, what can we learn from transgenic and knockout mice? (2000) Diabetes Metab., 26, pp. 433-448Araki, E., Lipes, M.A., Patti, M.E., Bruning, J.C., Haag III, B., Johnson, R.S., Kahn, C.R., Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene (1994) Nature, 372, pp. 186-190Withers, D.J., Burks, D.J., Towery, H.H., Altamuro, S.L., Flint, C.L., White, M.F., Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling (1999) Nat. Genet., 23, pp. 32-40Kido, Y., Burks, D.J., Withers, D., Bruning, J.C., Kahn, C.R., White, M.F., Accili, D., Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2 (2000) J. Clin. Invest., 105, pp. 199-205Araujo, E.P., De Souza, C.T., Gasparetti, A.L., Ueno, M., Boschero, A.C., Saad, M.J., Velloso, L.A., Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity (2005) Endocrinology, 146, pp. 1428-1437Wang, L.M., Myers Jr., M.G., Sun, X.J., Aaronson, S.A., White, M., Pierce, J.H., IRS-1, essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells (1993) Science, 261, pp. 1591-1594Taouis, M., Dupont, J., Gillet, A., Derouet, M., Simon, J., Insulin receptor substrate 1 antisense expression in an hepatoma cell line reduces cell proliferation and induces overexpression of the Src homology 2 domain and collagen protein (SHC) (1998) Mol. Cell Endocrinol., 137, pp. 177-186Waters, S.B., Yamauchi, K., Pessin, J.E., Functional expression of insulin receptor substrate-1 is required for insulin-stimulated mitogenic signaling (1993) J. Biol. Chem., 268, pp. 22231-22234Rose, D.W., Saltiel, A.R., Majumdar, M., Decker, S.J., Olefsky, J.M., Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 797-801Tanaka, S., Ito, T., Wands, J.R., Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules (1996) J. Biol. Chem., 271, pp. 14610-14616Ito, T., Sasaki, Y., Wands, J.R., Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases (1996) Mol. Cell Biol., 16, pp. 943-951D'Ambrosio, C., Keller, S.R., Morrione, A., Lienhard, G.E., Baserga, R., Surmacz, E., Transforming potential of the insulin receptor substrate 1 (1995) Cell Growth Differ., 6, pp. 557-562Fei, Z.L., D'Ambrosio, C., Li, S., Surmacz, E., Baserga, R., Association of insulin receptor substrate 1 with simian virus 40 large T antigen (1995) Mol. Cell Biol., 15, pp. 4232-4239Valentinis, B., Romano, G., Peruzzi, F., Morrione, A., Prisco, M., Soddu, S., Cristofanelli, B., Baserga, R., Growth and differentiation signals by the insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different pathways (1999) J. Biol. Chem., 274, pp. 12423-12430Reiss, K., Wang, J.Y., Romano, G., Furnari, F.B., Cavenee, W.K., Morrione, A., Tu, X., Baserga, R., IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation (2000) Oncogene, 19, pp. 2687-2694Chang, Q., Li, Y., White, M.F., Fletcher, J.A., Xiao, S., Constitutive activation of insulin receptor substrate 1 is a frequent event in human tumors, therapeutic implications (2002) Cancer Res., 62, pp. 6035-6038Hoang, C.D., Zhang, X., Scott, P.D., Guillaume, T.J., Maddaus, M.A., Yee, D., Kratzke, R.A., Selective activation of insulin receptor substrate-1 and -2 in pleural mesothelioma cells, association with distinct malignant phenotypes (2004) Cancer Res., 64, pp. 7479-7485Koda, M., Sulkowska, M., Kanczuga-Koda, L., Sulkowski, S., Expression of insulin receptor substrate 1 in primary breast cancer and lymph node metastases (2005) J. Clin. Pathol., 58, pp. 645-649Miranda, C., Greco, A., Miele, C., Pierotti, M.A., Van Obberghen, E., IRS-1 and IRS-2 are recruited by TrkA receptor and oncogenic TRK-T1 (2001) J. Cell Physiol., 186, pp. 35-46Traina, F., Carvalheira, J.B., Saad, M.J., Costa, F.F., Saad, S.T., BCR-ABL binds to IRS-1 and IRS-1 phosphorylation is inhibited by imatinib in K562 cells (2003) FEBS Lett., 535, pp. 17-22Jackson, J.G., White, M.F., Yee, D., Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells (1998) J. Biol. Chem., 273, pp. 9994-10003Neid, M., Datta, K., Stephan, S., Khanna, I., Pal, S., Shaw, L., White, M., Mukhopadhyay, D., Role of insulin receptor substrates and protein kinase C-zeta in vascular permeability factor/vascular endothelial growth factor expression in pancreatic cancer cells (2004) J. Biol. Chem., 279, pp. 3941-3948Manning, B.D., Cantley, L.C., United at last, the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling (2003) Biochem. Soc. Trans., 31, pp. 573-578Bohni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B.F., Beckingham, K., Hafen, E., Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4 (1999) Cell, 97, pp. 865-875Verdu, J., Buratovich, M.A., Wilder, E.L., Birnbaum, M.J., Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB (1999) Nat. Cell Biol., 1, pp. 500-506Scanga, S.E., Ruel, L., Binari, R.C., Snow, B., Stambolic, V., Bouchard, D., Peters, M., Manoukian, A.S., The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila (2000) Oncogene, 19, pp. 3971-3977Backman, S.A., Stambolic, V., Suzuki, A., Haight, J., Elia, A., Pretorius, J., Tsao, M.S., Mak, T.W., Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease (2001) Nat. Genet., 29, pp. 396-403Kwon, C.H., Zhu, X., Zhang, J., Knoop, L.L., Tharp, R., Smeyne, R.J., Eberhart, C.G., Baker, S.J., Pten regulates neuronal soma size, a mouse model of Lhermitte-Duclos disease (2001) Nat. Genet., 29, pp. 404-411Padberg, G.W., Schot, J.D., Vielvoye, G.J., Bots, G.T., De Beer, F.C., Lhermitte-Duclos disease and Cowden disease, a single phakomatosis (1991) Ann. Neurol., 29, pp. 517-523Potter, C.J., Huang, H., Xu, T., Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size (2001) Cell, 105, pp. 357-368Gomez, M.R., Phenotypes of the tuberous sclerosis complex with a revision of diagnostic criteria (1991) Ann. NY Acad. Sci., 615, pp. 1-7Young, J.M., Burley, M.W., Jeremiah, S.J., Jeganathan, D., Ekong, R., Osborne, J.P., Povey, S., A mutation screen of the TSC1 gene reveals 26 protein truncating mutations and 1 splice site mutation in a panel of 79 tuberous sclerosis patients (1998) Ann. Hum. Genet., 62 (3 PART), pp. 203-213Montagne, J., Radimerski, T., Thomas, G., Insulin signaling, lessons from the Drosophila tuberous sclerosis complex, a tumor suppressor (2001) Sci. STKE, pp. PE36Dan, H.C., Sun, M., Yang, L., Feldman, R.I., Sui, X.M., Ou, C.C., Nellist, M., Cheng, J.Q., Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin (2002) J. Biol. Chem., 277, pp. 35364-35370Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., Cantley, L.C., Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway (2002) Mol. Cell, 10, pp. 151-162Mills, G.B., Lu, Y., Kohn, E.C., Linking molecular therapeutics to molecular diagnostics, inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10031-10033Carvalheira, J.B., Ribeiro, E.B., Araujo, E.P., Guimaraes, R.B., Telles, M.M., Torsoni, M., Gontijo, J.A., Saad, M.J., Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats (2003) Diabetologia, 46, pp. 1629-1640Schultz, R.M., Merriman, R.L., Andis, S.L., Bonjouklian, R., Grindey, G.B., Rutherford, P.G., Gallegos, A., Powis, G., In vitro and in vivo antitumor activity of the phosphatidylinositol-3- kinase inhibitor, wortmannin (1995) Anticancer Res., 15, pp. 1135-1139Hu, L., Zaloudek, C., Mills, G.B., Gray, J., Jaffe, R.B., In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002) (2000) Clin. Cancer Res., 6, pp. 880-886Stiles, B., Gilman, V., Khanzenzon, N., Lesche, R., Li, A., Qiao, R., Liu, X., Wu, H., Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis (2002) Mol. Cell Biol., 22, pp. 3842-3851Nakamura, N., Ramaswamy, S., Vazquez, F., Signoretti, S., Loda, M., Sellers, W.R., Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN (2000) Mol. Cell Biol., 20, pp. 8969-8982Vezina, C., Kudelski, A., Sehgal, S.N., Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle (1975) J. Antibiot. (Tokyo), 28, pp. 721-726Podsypanina, K., Lee, R.T., Politis, C., Hennessy, I., Crane, A., Puc, J., Neshat, M., Parsons, R., An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in PTEN+/- mice (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10320-10325Neshat, M.S., Mellinghoff, I.K., Tran, C., Stiles, B., Thomas, G., Petersen, R., Frost, P., Sawyers, C.L., Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10314-10319Aoki, M., Blazek, E., Vogt, P.K., A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 136-141Opalinska, J.B., Gewirtz, A.M., Therapeutic potential of antisense nucleic acid molecules (2003) Sci. STKE, pp. PE47Opalinska, J.B., Gewirtz, A.M., Nucleic-acid therapeutics, basic principles and recent applications (2002) Nat. Rev. Drug Discov., 1, pp. 503-514Crooke, S.T., Molecular mechanisms of action of antisense drugs (1999) Biochim. Biophys. Acta, 1489, pp. 31-44Lima, W

    Tear Film And Ocular Surface Changes In Diabetes Mellitus [alterações Do Filme Lacrimal E Da Superfície Ocular No Diabetes Mellitus]

    No full text
    Diabetes mellitus and its clinical association with dry eye and ocular surface are becoming a frequent and sometimes complicate problem in Ophthalmology. Epidemiological data show that an increase in the number of patients with this association is expected following the trend to rise of the disease. The present work reviews the clinical and functional aspects of this problem. The observations indicate that metabolic, neuropathic and vascular tissue damages lead to an inflammatory process and functional degeneration. The physiopathological mechanism include hyperglycemia, advanced glycated end product accumulation, oxidative stress and inflammation mediated by NF-κB signaling pathways. Potential treatments enlightened by those findings would include antioxidant, anti-inflammatory, secretagogues and/or anabolic agents that would mimic insulin effects.716 SUPP96103Moss, S.E., Klein, R., Klein, B.E., Prevalence of and risk factors for dry eye syndrome (2000) Arch Ophthalmol, 118 (9), pp. 1264-1268Moss, S.E., Klein, R., Klein, B.E., Incidence of dry eye in an older population (2004) Arch Ophthalmol, 122 (3), pp. 369-373Ramos-Remus, C., Suarez-Almazor, M., Russell, A.S., Low tear production in patients with diabetes mellitus is not due to Sjögren's syndrome (1994) Clin Exp Rheumatol, 12 (4), pp. 375-380Goebbels, M., Tear secretion and tear film function in insulin dependent diabetics (2000) Br J Ophthalmol, 84 (1), pp. 19-21Dogru, M., Katakami, C., Inoue, M., Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus (2001) Ophthalmology, 108 (3), pp. 586-592Kaiserman, I., Kaiserman, N., Nakar, S., Vinker, S., Dry eye in diabetic patients (2005) Am J Ophthalmol, 139 (3), pp. 498-503Zimmet, P., Alberti, K.G., Shaw, J., Global and societal implications of the diabetes epidemic (2001) Nature, 414 (6865), pp. 782-787King, H., Aubert, R.E., Herman, W.H., Global burden of diabetes, 1995-2025: prevalence, numerical estimates and projections (1998) Diabetes Care, 21 (9), pp. 1414-1431Saad, M.J., Molecular mechanisms of insulin resistance (1994) Braz J Med Biol Res, 27 (4), pp. 941-957Kahn, B.B., Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance (1998) Cell, 92 (5), pp. 593-596Kahn, C.R., Vicent, D., Doria, A., Genetics of non-insulin-dependent (type-II) diabetes mellitus (1996) Annu Rev Med, 47, pp. 509-531Brownlee, M., Biochemistry and molecular cell biology of diabetic complications (2001) Nature, 414 (6865), pp. 813-820The Diabetes Control and Complications Trial Research Group (1993) N Engl J Med, 329 (14), pp. 977-986. , The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitusUK Prospective Diabetes Study (UKPDS) Group (1998) Lancet, 352 (9131), pp. 837-853. , Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)Ebara, T., Conde, K., Kako, Y., Liu, Y., Xu, Y., Ramakrishnan, R., Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice (2000) J Clin Invest, 105 (12), pp. 1807-1818Ginsberg, H.N., Insulin resistance and cardiovascular disease (2000) J Clin Invest, 106 (4), pp. 453-458Wei, M., Gaskill, S.P., Haffner, S.M., Stern, M.P., Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality (1998) The San Antonio Heart Study. Diabetes Care., 21 (7), pp. 1167-1172Ishida, N., Rao, G.N., del Cerro, M., Aquavella, J.V., Corneal nerve alterations in diabetes mellitus (1984) Arch Ophthalmol, 102 (9), pp. 1380-1384Azar, D.T., Spurr-Michaud, S.J., Tisdale, A.S., Gipson, I.K., Altered epithelialbasement membrane interactions in diabetic corneas (1992) Arch Ophthalmol, 110 (4), pp. 537-540Hsueh, W.A., Law, R.E., Cardiovascular risk continuum: implications of insulin resistance and diabetes (1998) Am J Med, 105 (1 A), pp. 4S-14SJiang, Z.Y., Lin, Y.W., Clemont, A., Feener, E.P., Hein, K.D., Igarashi, M., Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats (1999) J Clin Invest, 104 (4), pp. 447-457Zecchin, H.G., Bezerra, R.M., Carvalheira, J.B., Carvalho-Filho, M.A., Metze, K., Franchini, K.G., Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance-the obese middle-aged and the spontaneously hypertensive rats (2003) Diabetologia, 46 (4), pp. 479-491Zecchin, H.G., Priviero, F.B., Souza, C.T., Zecchin, K.G., Prada, P.O., Carvalheira, J.B., Defective insulin and acetylcholine induction of endothelial cell-nitric oxide synthase through insulin receptor substrate/Akt signaling pathway in aorta of obese rats (2007) Diabetes, 56 (4), pp. 1014-1024Du, X.L., Edelstein, D., Rossetti, L., Fantus, I.G., Goldberg, H., Ziyadeh, F., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation (2000) Proc Natl Acad Sci U S A, 97 (22), pp. 12222-12226Yagyu, H., Kitamine, T., Osuga, J., Tozawa, R., Chen, Z., Kaji, Y., Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia (2000) J Biol Chem, 275 (28), pp. 21324-21330Temelkova-Kurktschiev, T.S., Koehler, C., Henkel, E., Leonhardt, W., Fuecker, K., Hanefeld, M., Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level (2000) Diabetes Care, 23 (12), pp. 1830-1834Vlassara, H., Bucala, R., Striker, L., Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging (1994) Lab Invest, 70 (2), pp. 138-151Alves, M., Calegari, V.C., Cunha, D.A., Saad, M.J., Velloso, L.A., Rocha, E.M., Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-B in lacrimal glands of diabetic rats (2005) Diabetologia, 48 (12), pp. 2675-2681Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P.M., Chen, J., Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB (2001) Diabetes, 50 (12), pp. 2792-2808Evans, J.L., Goldfine, I.D., Maddux, B.A., Grodsky, G.M., Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes (2002) Endocr Rev, 23 (5), pp. 599-622Stitt, A.W., Advanced glycation: an important pathological event in diabetic and age related ocular disease (2001) Br J Ophthalmol, 85 (6), pp. 746-753Leslie, R.D., United Kingdom prospective diabetes study (UKPDS): what now or so what? (1999) Diabetes Metab Res Rev, 15 (1), pp. 65-71Chung, H., Tolentino, F.I., Cajita, V.N., Acosta, J., Refojo, M.F., Reevaluation of corneal complications after closed vitrectomy (1988) Arch Ophthalmol, 106 (7), pp. 916-919Taylor, H.R., Kimsey, R.A., Corneal epithelial basement membrane changes in diabetes (1981) Invest Ophthalmol Vis Sci, 20 (4), pp. 548-553Kaji, Y., Prevention of diabetic keratopathy (2005) Br J Ophthalmol, 89 (3), pp. 254-255Foulks, G.N., Thoft, R.A., Perry, H.D., Tolentino, F.I., Factors related to corneal epithelial complications after closed vitrectomy in diabetics (1979) Arch Ophthalmol, 97 (6), pp. 1076-1078Hyndiuk, R.A., Kazarian, E.L., Schultz, R.O., Seideman, S., Neurotrophic corneal ulcers in diabetes mellitus (1977) Arch Ophthalmol, 95 (12), pp. 2193-2196Kenyon, K.R., Stark, W.J., Stone, D.L., Corneal endothelial degeneration and fibrous proliferation after plana vitrectomy (1976) Am J Ophthalmol, 81 (4), pp. 486-490Friend, J., Thoft, R.A., The diabetic cornea (1984) Int Ophthalmol Clin, 24 (4), pp. 111-123Cousen, P., Cackett, P., Bennett, H., Swa, K., Dhillon, B., Tear production and corneal sensitivity in diabetes (2007) J Diabetes Complications, 21 (6), pp. 371-373Lockwood, A., Hope-Ross, M., Chell, P., Neurotrophic keratopathy and diabetes mellitus (2006) Eye, 20 (7), pp. 837-839Seifart, U., Strempel, I., The dry eye and diabetes mellitus (1994) Ophthalmologe, 91 (2), pp. 235-239Rieger, G., The importance of the precorneal tear film for the quality of optical imaging (1992) Br J Ophthalmol, 76 (3), pp. 157-158Inoue, K., Kato, S., Ohara, C., Numaga, J., Amano, S., Oshika, T., Ocular and systemic factors relevant to diabetic keratoepitheliopathy (2001) Cornea, 20 (8), pp. 798-801Nepp, J., Abela, C., Polzer, I., Derbolav, A., Wedrich, A., Is there a correlation between the severity of diabetic retinopathy and keratoconjunctivitis sicca? (2000) Cornea, 19 (4), pp. 487-491Henricsson, M., Nilsson, A., Janzon, L., Groop, L., The effect of glycaemic control and the introduction of insulin therapy on retinopathy in non-insulin-dependent diabetes mellitus (1997) Diabet Med, 14 (2), pp. 123-131Rakieten, N., Rakieten, M.L., Nadkarni, M.V., Studies on the diabetogenic action of streptozotocin (NSC-37917) (1963) Cancer Chemother Rep, 29, pp. 91-98Junod, A., Lambert, A.E., Orci, L., Pictet, R., Gonet, A.E., Renold, A.E., Studies of the diabetogenic action of streptozotocin (1967) Proc Soc Exp Biol Med, 126 (1), pp. 201-205Reed, M.J., Meszaros, K., Entes, L.J., Claypool, M.D., Pinkett, J.G., Gadbois, T.M., A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat (2000) Metabolism, 49 (11), pp. 1390-1394Kuriyama, H., Sasaki, K., Fukuda, M., Studies on diabetic cataract in rats induced by streptozotocin II. Biochemical examinations of rat lenses in relation to cataract stages (1983) Ophthalmic Res, 15 (4), pp. 191-197Stitt, A.W., Anderson, H.R., Gardiner, T.A., McIntyre, I., Archer, D.B., The combined effects of diabetes and ionising radiation on the rat retina: an ultrastructural study (1994) Curr Eye Res, 13 (1), pp. 79-86Cutler, L.S., Pinney, H.E., Christian, C., Russotto, S.B., Ultrastructural studies of the rat submandibular gland in streptozotocin induced diabetes mellitus (1979) Virchows Arch A Pathol Anat Histol, 382 (3), pp. 301-311Zagon, I.S., Sassani, J.W., McLaughlin, P.J., Insulin treatment ameliorates impaired corneal reepithelialization in diabetic rats (2006) Diabetes, 55 (4), pp. 1141-1147Cunha, D.A., de Alves, M.C., Stoppiglia, L.F., Jorge, A.G., Modulo, C.M., Carneiro, E.M., Extra-pancreatic insulin production in RAt lachrymal gland after streptozotocin-induced islet beta-cells destruction (2007) Biochim Biophys Acta, 1770 (8), pp. 1128-1135Toda, I., Sullivan, B.D., Rocha, E.M., da Silveira, L.A., Wickham, L.A., Sullivan, D.A., Impact of gender on exocrine gland inflammation in mouse models of Sjogren's syndrome (1999) Exp Eye Res, 69 (4), pp. 355-366Barabino, S., Dana, M.R., Animal models of dry eye: a critical assessment of opportunities and limitations (2004) Invest Ophthalmol Vis Sci, 45 (6), pp. 1641-1646Wakuta, M., Morishige, N., Chikama, T., Seki, K., Nagano, T., Nishida, T., Delayed wound closure and phenotypic changes in corneal epithelium of the spontaneously diabetic Goto-Kakizaki rat (2007) Invest Ophthalmol Vis Sci, 48 (2), pp. 590-596Rocha, E.M., de, M.L.M.H., Carvalho, C.R., Saad, M.J., Velloso, L.A., Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats (2000) Curr Eye Res, 21 (5), pp. 833-842Hann, L.E., Kelleher, R.S., Sullivan, D.A., Influence of culture conditions on the androgen control of secretory component production by acinar cells from the rat lacrimal gland (1991) Invest Ophthalmol Vis Sci, 32 (9), pp. 2610-2621Adeghate, E., Hameed, R.S., Immunohistochemical localization of orexin-B, orexin-1 receptor, ghrelin GHS-R in the lacrimal gland of normal and diabetic rats (2005) Peptides, 26 (12), pp. 2585-2589Mahay, S., Adeghate, E., Lindley, M.Z., Rolph, C.E., Singh, J., Streptozotocininduced type 1 diabetes mellitus alters the morphology, secretory function and acyl lipid contents in the isolated rat parotid salivary gland (2004) Mol Cell Biochem, 261 (1-2), pp. 175-181Nogueira, F.N., Carvalho, A.M., Yamaguti, P.M., Nicolau, J., Antioxidant parameters and lipid peroxidation in salivary glands of streptozotocin-induced diabetic rats (2005) Clin Chim Acta, 353 (1-2), pp. 133-139Nishida, T., Nakagawa, S., Manabe, R., Superoxide dismutase activity in diabetic rat retina (1984) Jpn J Ophthalmol, 28 (4), pp. 377-382Zoukhri, D., Hodges, R.R., Byon, D., Kublin, C.L., Role of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia (2002) Invest Ophthalmol Vis Sci, 43 (5), pp. 1429-1436Rocha, E.M., Wickham, L.A., Huang, Z., Toda, I., Gao, J., da Silveira, L.A., Presence and testosterone influence on the levels of antiand pro-inflammatory cytokines in lacrimal tissues of a mouse model of Sjogren's syndrome (1998) Adv Exp Med Biol, 438, pp. 485-491Fukushi, S., Merola, L.O., Tanaka, M., Datiles, M., Kinoshita, J.H., Reepithelialization of denuded corneas in diabetic rats (1980) Exp Eye Res, 31 (5), pp. 611-621Azar, D.T., Gipson, I.K., Repair of the corneal epithelial adhesion structures following keratectomy wounds in diabetic rabbits (1989) Acta Ophthalmol Suppl, 192, pp. 72-79Fowler, S.A., Wound healing in the corneal epithelium in diabetic and normal rats (1980) Exp Eye Res, 31 (2), pp. 167-179Zagon, I.S., Klocek, M.S., Sassani, J.W., McLaughlin, P.J., Use of topical insulin to normalize corneal epithelial healing in diabetes mellitus (2007) Arch Ophthalmol, 125 (8), pp. 1082-1088Gonul, B., Koz, M., Ersoz, G., Kaplan, B., Effect of EGF on the corneal wound healing of alloxan diabetic mice (1992) Exp Eye Res, 54 (4), pp. 519-524Yamada, N., Yanai, R., Kawamoto, K., Nagano, T., Nakamura, M., Inui, M., Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1 (2006) Invest Ophthalmol Vis Sci, 47 (8), pp. 3286-3292Yanai, R., Yamada, N., Inui, M., Nishida, T., Correlation of proliferative and antiapoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells (2006) Exp Eye Res, 83 (1), pp. 76-83Cunha, D.A., Carneiro, E.M., Alves Mde, C., Jorge, A.G., de Sousa, S.M., Boschero, A.C., Insulin secretion by rat lacrimal glands: effects of systemic and local variables (2005) Am J Physiol Endocrinol Metab, 289 (5), pp. E768-E775Kern, T.S., Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy (2007) Exp Diabetes Res, 95, p. 103Tracey, K.J., Physiology and immunology of the cholinergic antiinflammatory pathway (2007) J Clin Invest, 117 (2), pp. 289-296Nguyen, D.H., Beuerman, R.W., Meneray, M., Toshida, H., Sensory denervation modulates eIF-2 alpha kinase expression in the rabbit lacrimal gland (2006) Curr Eye Res, 31 (4), pp. 287-295Carter, D.A., Wobken, J.D., Dixit, P.K., Bauer, G.E., Immunoreactive insulin in rat salivary glands and its dependence on age and serum insulin levels (1995) Proc Soc Exp Biol Med, 209 (3), pp. 245-250Westrom, B.R., Ekman, R., Svendsen, L., Svendsen, J., Karlsson, B.W., Levels of immunoreactive insulin, neurotensin, and bombesin in porcine colostrum and milk (1987) J Pediatr Gastroenterol Nutr, 6 (3), pp. 460-465Rocha, E.M., Cunha, D.A., Carneiro, E.M., Boschero, A.C., Saad, M.J., Velloso, L.A., Identification of insulin in the tear film and insulin receptor and IGF-1 receptor on the human ocular surface (2002) Invest Ophthalmol Vis Sci, 43 (4), pp. 963-967Habib, T., Hejna, J.A., Moses, R.E., Decker, S.J., Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein (1998) J Biol Chem, 273 (29), pp. 18605-18609Degenhardt, T.P., Alderson, N.L., Arrington, D.D., Beattie, R.J., Basgen, J.M., Steffes, M.W., Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat (2002) Kidney Int, 61 (3), pp. 939-950Peponis, V., Bonovas, S., Kapranou, A., Peponi, E., Filioussi, K., Magkou, C., Conjunctival and tear film changes after vitamin C and E administration in noninsulin dependent diabetes mellitus (2004) Med Sci Monit, 10 (5), pp. CR213-CR217Yin, M.J., Yamamoto, Y., Gaynor, R.B., The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta (1998) Nature, 396 (6706), pp. 77-80Shoelson, S.E., Lee, J., Yuan, M., Inflammation and the IKK beta/I kappa B/NFkappa B axis in obesityand diet-induced insulin resistance (2003) Int J Obes Relat Metab Disord, 27 (SUPPL 3), pp. S49-52Beauregard, C., Brandt, P.C., Peroxisome proliferator-activated receptor agonists inhibit interleukin-1beta-mediated nitric oxide production in cultured lacrimal gland acinar cells (2003) J Ocul Pharmacol Ther, 19 (6), pp. 579-587Bonini, S., Lambiase, A., Rama, P., Caprioglio, G., Aloe, L., Topical treatment with nerve growth factor for neurotrophic keratitis (2000) Ophthalmology, 107 (7), pp. 1347-1351. , discussion 1351-2Brown, S.M., Lamberts, D.W., Reid, T.W., Nishida, T., Murphy, C.J., Neurotrophic and anhidrotic keratopathy treated with substance P and insulinlike growth factor 1 (1997) Arch Ophthalmol, 115 (7), pp. 926-927Watanabe, M., Yamagishi-Wang, H., Kawaguchi, M., Lowered susceptibility of muscarinic receptor involved in salivary secretion of streptozotocin-induced diabetic rats (2001) Jpn J Pharmacol, 87 (2), pp. 117-124Schulze, S., Sekundo, W., Kroll, P., Autologous serum versus hyaluronic acid eye drops for the treatment of corneal erosions after vitrectomy in diabetic patients (2005) A prospective randomized study. Ophthalmologe., 102 (9), pp. 863-86

    Esophagogastric Junction Adenocarcinoma: Multivariate Analyses Of Surgical Morbi-mortality And Adjuvant Therapy.

    No full text
    In recent years the literature has recorded a progressive increase in the prevalence of adenocarcinoma of the esophagogastric junction. Several factors can interfere with the morbidity and mortality of surgical treatment. Non-randomized retrospective study of prognostic factors of operated patients by adenocarcinoma of esophagogastric junction, with or without post-operative chemotherapy and radiotherapy. Medical records were reviewed from patients treated at university hospital in the period of 1989 and 2009, to obtain data about pre and postoperative treatment. Cox's univariate and multivariate regression analysis of risk factors for prognostic of these patients were done with level of significance of 5 %. Were reviewed 103 patients distributed as: 1) 78 (75.7%) patients without adjuvant therapy, and 2) 25 (24.3%) with it. All patients underwent surgical resection with curative intent. Cox's multivariate regression analysis of all patients showed that: lymphnode invasion N2 had greater risk of death in 5.9 times; broncopneumonia, in 11.4 times; tumoral recurrence during clinical following greater in 3.8 times. Tumoral recurrence, lymphnode metastasis and broncopneumonia in the postoperative period were factors of bad prognosis and contributed significantly to increase morbimortality and decrease global survival.25422923

    Infliximab restores glucose Homeostasis in an animal model of diet-induced obesity and diabetes

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOTNF-alpha plays an important role in obesity-linked insulin resistance and diabetes mellitus by activating at least two serine kinases capable of promoting negative regulation of key elements of the insulin signaling pathway. Pharmacological inhibition of TNF-alpha is currently in use for the treatment of rheumatoid and psoriatic arthritis, and some case reports have shown clinical improvement of diabetes in patients treated with the TNF-alpha blocking monoclonal antibody infliximab. The objective of this study was to evaluate the effect of infliximab on glucose homeostasis and insulin signal transduction in an animal model of diabetes. Diabetes was induced in Swiss mice by a fat-rich diet. Glucose and insulin homeostasis were evaluated by glucose and insulin tolerance tests and by the hyperinsulinemic-euglycemic clamp. Signal transduction was evaluated by immunoprecipitation and immunoblotting assays. Short-term treatment with infliximab rapidly reduced blood glucose and insulin levels and glucose and insulin areas under the curve during a glucose tolerance test. Furthermore, infliximab increased the glucose decay constant during an insulin tolerance test and promoted a significant increase in glucose infusion rate during a hyperinsulinemic-euglycemic clamp. In addition, the clinical outcomes were accompanied by improved insulin signal transduction in muscle, liver, and hypothalamus, as determined by the evaluation of insulin-induced insulin receptor, insulin receptor substrate-1, and receptor substrate-2 tyrosine phosphorylation and Akt and forkhead box protein O1 serine phosphorylation. Thus, pharmacological inhibition of TNF-alpha may be an attractive approach to treat severely insulin-resistant patients with type 2 diabetes mellituso TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.1481259915997FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçã
    corecore