6 research outputs found

    Use of sheet-piling submerged vanes

    No full text

    Modelling runoff quantity and quality in tropical urban catchments using storm water management model

    Get PDF
    Due to differences in rainfall regimes and management practices, tropical urban catchments are expected to behave differently from temperate catchments in terms of pollutant sources and their transport mechanism. Storm Water Management Model (SWMM) was applied to simulate runoff quantity (peakflow and runoff depth) and quality (total suspended solids and total phosphorous) in residential, commercial and industrial catchments. For each catchment, the model was calibrated using 8-10 storm events and validated using seven new events. The model performance was evaluated based on the relative error, normalized objective function, Nash-Sutcliffe coefficient and 1:1 plots between the simulated and observed values. The calibration and validation results showed good agreement between simulated and measured data. Application of Storm Water Management Model for predicting runoff quantity has been improved by taking into account catchment's antecedent moisture condition. The impervious depression storages obtained for dry and wet conditions were 0. 8 and 0. 2 mm, respectively. The locally derived build-up and wash-off parameters were used for modelling runoff quality

    Characterisation and sediment-source linkages of intertidal sediment of the UK's north Sefton Coast using magnetic and textural properties: Findings and limitations

    No full text
    Sediment pathways and links to offshore processes are considered in the textural and magnetic characteristics of sediments of the intertidal flats and salt marshes of the north Sefton Coast, UK. In addition, sediment from a range of intertidal, marine and fluvial locations within the northwest region has similarly been characterised. Subsequently, the characteristics of these regional sediments, using a multivariate statistical approach of R- and Q-mode factor analyses, have been used to investigate the sediment transport pathways of the north Sefton Coast sediment. The benefits of fractionating sediment samples have been observed, and by using combinations of textural and isothermal remanent magnetic measurements, specific environments within the research have been successfully differentiated and characterised. Linkages between potential sediment source areas have also been established on a particle size-related basis. © Springer-Verlag 2011
    corecore