2,445 research outputs found
An engineered Tetrahymena tRNA(Gln) for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of mutations at several sites of the nicotinic acetylcholine receptor, it is established that THG73 represents a major improvement over previous nonsense suppressors both in terms of efficiency and fidelity of unnatural amino acid incorporation. Compared with a previous tRNA used for in vivo suppression, THG73 is as much as 100-fold less likely to be acylated by endogenous synthetases of the Xenopus oocyte. This effectively eliminates a major concern of the in vivo suppression methodology, the undesirable incorporation of natural amino acids at the suppression site. In addition, THG73 is 4-10-fold more efficient at incorporating unnatural amino acids in the oocyte system. Taken together, these two advances should greatly expand the range of applicability of the in vivo nonsense suppression methodology
Recommended from our members
Protocol for a randomized controlled trial examining multilevel prediction of response to behavioral activation and exposure-based therapy for generalized anxiety disorder.
BACKGROUND:Only 40-60% of patients with generalized anxiety disorder experience long-lasting improvement with gold standard psychosocial interventions. Identifying neurobehavioral factors that predict treatment success might provide specific targets for more individualized interventions, fostering more optimal outcomes and bringing us closer to the goal of "personalized medicine." Research suggests that reward and threat processing (approach/avoidance behavior) and cognitive control may be important for understanding anxiety and comorbid depressive disorders and may have relevance to treatment outcomes. This study was designed to determine whether approach-avoidance behaviors and associated neural responses moderate treatment response to exposure-based versus behavioral activation therapy for generalized anxiety disorder. METHODS/DESIGN:We are conducting a randomized controlled trial involving two 10-week group-based interventions: exposure-based therapy or behavioral activation therapy. These interventions focus on specific and unique aspects of threat and reward processing, respectively. Prior to and after treatment, participants are interviewed and undergo behavioral, biomarker, and neuroimaging assessments, with a focus on approach and avoidance processing and decision-making. Primary analyses will use mixed models to examine whether hypothesized approach, avoidance, and conflict arbitration behaviors and associated neural responses at baseline moderate symptom change with treatment, as assessed using the Generalized Anxiety Disorder-7 item scale. Exploratory analyses will examine additional potential treatment moderators and use data reduction and machine learning methods. DISCUSSION:This protocol provides a framework for how studies may be designed to move the field toward neuroscience-informed and personalized psychosocial treatments. The results of this trial will have implications for approach-avoidance processing in generalized anxiety disorder, relationships between levels of analysis (i.e., behavioral, neural), and predictors of behavioral therapy outcome. TRIAL REGISTRATION:The study was retrospectively registered within 21 days of first participant enrollment in accordance with FDAAA 801 with ClinicalTrials.gov, NCT02807480. Registered on June 21, 2016, before results
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
Decentralized motion planning for multiple mobile robots: The cocktail party model
Abstract. This paper presents an approach for decentralized real-time motion planning for multiple mobile robots operating in a common 2-dimensional environment with unknown stationary obstacles. In our model, a robot can see (sense) the surrounding objects. It knows its current and its target’s position, is able to distinguish a robot from an obstacle, and can assess the instantaneous motion of another robot. Other than this, a robot has no knowledge about the scene or of the paths and objectives of other robots. There is no mutual communication among the robots; no constraints are imposed on the paths or shapes of robots and obstacles. Each robot plans its path toward its target dynamically, based on its current position and the sensory feedback; only the translation component is considered for the planning purposes. With this model, it is clear that no provable motion planning strategy can be designed (a simple example with a dead-lock is discussed); this naturally points to heuristic algorithms. The suggested strategy is based on maze-searching techniques. Computer simulation results are provided that demonstrate good performance and a remarkable robustness of the algorithm (meaning by this a virtual impossibility to create a dead-lock in a “random ” scene). Keywords: mobile robots, autonomous agents, decentralized intelligence, robot motion plannin
Depoliticisation, Resilience and the Herceptin Post-code Lottery Crisis: Holding Back the Tide
This article:
Covers new empirical terrain in the study of depoliticisation, with an in-depth case study of health technology regulation;
Analyses depoliticisation from a novel analytical perspective, examining how depoliticised institutions are resilient to external pressure for politicisation;
Posits a distinctive framework for analysing resilience, drawing on cognate literatures on policy networks and agencification;
Raises interesting and distinctive questions about the nature of depoliticisation in advanced liberal democracies, arguing it is more contested than commonly acknowledged.
Depoliticisation as a concept offers distinctive insights into how governments attempt to relieve political pressures in liberal democracies. Analysis has examined the effects of depoliticisation tactics on the public, but not how those tactics are sustained during moments of political tension. Drawing on policy networks and agencification literatures, this article examines how these tactics are resilient against pressure for politicisation. Using an in-depth case study of the controversial appraisal of cancer drug Herceptin in 2005/6 by the National Institute for Health and Clinical Excellence (NICE), the article examines how ‘resilient’ NICE was to external politicisation. It is argued that NICE was resilient because it was effectively ‘insulated’ by formal procedures and informal norms of deference to scientific expertise. This mechanism is termed ‘institutional double glazing’. The conclusion suggests developments to the conceptual and methodological framework of depoliticisation, and highlights theoretical insights into the nature of ‘anti-politics’ in contemporary democracies
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Physics, Topology, Logic and Computation: A Rosetta Stone
In physics, Feynman diagrams are used to reason about quantum processes. In
the 1980s, it became clear that underlying these diagrams is a powerful analogy
between quantum physics and topology: namely, a linear operator behaves very
much like a "cobordism". Similar diagrams can be used to reason about logic,
where they represent proofs, and computation, where they represent programs.
With the rise of interest in quantum cryptography and quantum computation, it
became clear that there is extensive network of analogies between physics,
topology, logic and computation. In this expository paper, we make some of
these analogies precise using the concept of "closed symmetric monoidal
category". We assume no prior knowledge of category theory, proof theory or
computer science.Comment: 73 pages, 8 encapsulated postscript figure
No evidence of association between genetic variants of the PDCD1 ligands and SLE
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldPDCD1, an immunoreceptor involved in peripheral tolerance has previously been shown to be genetically associated with systemic lupus erythematosus (SLE). PDCD1 has two ligands whose genes are located in close proximity on chromosome 9p24. Our attention was drawn to these ligands after finding suggestive linkage to a marker (gata62f03, Z=2.27) located close to their genes in a genome scan of Icelandic families multiplex for SLE. Here, we analyse Swedish trios (N=149) for 23 single nucleotide polymorphisms (SNPs) within the genes of the PDCD1 ligands. Initially, indication of association to eight SNPs was observed, and these SNPs were therefore also analysed in Mexican trios (N=90), as well as independent sets of patients and controls from Sweden (152 patients, 448 controls) and Argentina (288 patients, 288 controls). We do not find support for genetic association to SLE. This is the first genetic study of SLE and the PDCD1 ligands and the lack of association in several cohorts implies that these genes are not major risk factors for SLE.Genes and Immunity (2007) 8, 69-74. doi:10.1038/sj.gene.6364360; published online 30 November 2006
- …
