49 research outputs found
Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS
Two-Pion Exchange in Proton-Proton Scattering
The contribution of the box and crossed two-pion-exchange diagrams to
proton-proton scattering at 90 is calculated in the laboratory
momentum range up to 12 GeV/c. Relativistic form factors related to the nucleon
and pion size and representing the pion source distribution based on the quark
structure of the hadronic core are included at each vertex of the pion-nucleon
interaction. These form factors depend on the four-momenta of the exchanged
pions and scattering nucleons. Feynman-diagram amplitudes calculated without
form factors are checked against those derived from dispersion relations. In
this comparison, one notices that a very short-range part of the crossed
diagram, neglected in dispersion-relation calculations of the two-pion-exchange
nucleon-nucleon potential, gives a sizable contribution. In the Feynman-diagram
calculation with form factors the agreement with measured spin-separated cross
sections, as well as amplitudes in the lower part of the energy range
considered, is much better for pion-nucleon pseudo-vector vis \`a vis
pseudo-scalar coupling. While strengths of the box and crossed diagrams are
comparable for laboratory momenta below 2 GeV/c, the crossed diagram dominates
for larger momenta, largely due to the kinematics of the crossed diagram
allowing a smaller momentum transfer in the nucleon center of mass. An
important contribution arises from the principal-value part of the integrals
which is non-zero when form factors are included. It seems that the importance
of the exchange of color singlets may extend higher in energy than expected
Tractability in Constraint Satisfaction Problems: A Survey
International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP
How much afterhyperpolarization conductance is recruited by an action potential? A dynamic-clamp study in cat lumbar motoneurons.
We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude. We determined at the same time the conductance and the reversal potential of the AHP current. This new method was validated by a simple theoretical model incorporating AHP and hyperpolarization-activated (Ih) currents and could be applied when the decay time constant of the AHP conductance was at least five times shorter than the estimated Ih activation time. This condition was fulfilled in 33 of 44 motoneurons. The AHP conductance varied from 0.3 to 1.4 microS in both slow- and fast-type motoneurons, which was approximately the same range as the input conductance of the entire population. However, AHP and input conductances were not correlated. The larger AHP in slow-type motoneurons was mainly attributable to their smaller input conductance compared with fast motoneurons. The likeness of the AHP conductance in both types of motoneurons is in sharp contrast to differences in AHP decay time and explains why slow- and fast-type motoneurons have similar gain
Virtual arc consistency for weighted csp
Optimizing a combination of local cost functions on discrete variables is a central problem in many formalisms such as in probabilistic networks, maximum satisfiability, weighted CSP or factor graphs. Recent results have shown that maintaining a form of local consistency in a Branch and Bound search provides bounds that are strong enough to solve many practical instances. In this paper, we introduce Virtual Arc Consistency (VAC) which iteratively identifies and applies sequences of cost propagation over rational costs that are guaranteed to transform a WCSP in another WCSP with an improved constant cost. Although not as strong as Optimal Soft Arc Consistency, VAC is faster and powerful enough to solve submodular problems. Maintaining VAC inside branch and bound leads to important improvements in efficiency on large difficult problems and allowed us to close two famous frequency assignment problem instances
Virtual Arc Consistency for Weighted CSP
Trabajo presentado en la Twenty-Third AAAI Conference on Artificial Intelligence, July, 2008, Chicago, Illinois USA.Optimizing a combination of local cost functions on discrete variables is a central problem in many formalisms
such as in probabilistic networks, maximum satisfiability, weighted CSP or factor graphs. Recent results have
shown that maintaining a form of local consistency in a Branch and Bound search provides bounds that are
strong enough to solve many practical instances.
In this paper, we introduce Virtual Arc Consistency (VAC) which iteratively identifies and applies sequences of cost propagation over rational costs that are guaranteed to transform a WCSP in another WCSP with an improved constant cost. Although not as strong as Optimal Soft Arc Consistency, VAC is faster and powerful enough to solve submodular problems. Maintaining VAC inside branch and bound leads to important improvements in efficiency on large difficult problems and allowed us to close two famous frequency assignment problem instances.This research has been partly funded by the Agence Nationale de la Recherche (STALDECOPT project).Peer reviewe
Flexible Management of Large-Scale Integer Domains in CSPs
Most research on Constraint Programming concerns the (exponential) search space of Constraint Satisfaction Problems (CSPs) and intelligent algorithms that reduce and explore it. This work proposes a different way, not of solving a problem, but of storing the domains of its variables, an importantâand less focusedâissue especially when they are large. The new data structures that are used are proved theoretically and empirically to adapt better to large domains, than the commonly used ones. The experiments of this work display the contrast between the most popular Constraint Programming systems and a new system that uses the data structures proposed in order to solve CSP instances with wide domains, such as known Bioinformatics problems