8 research outputs found

    Practical recommendations for choosing an immunobiological preparation for the treatment of severe bronchial asthma of T2-endotype

    Get PDF
    Biological therapy of bronchial asthma (BA) is a modern method of treating severe forms of the disease, that are uncontrolled by traditional pharmacotherapeutic approaches. Currently, 5 monoclonal antibody (AT) preparations are registered in the world for the treatment of severe bronchial asthma (SBA) of the T2 endotype (T2-SBA) – antibodies, binding to immunoglobulin (Ig) E (anti-IgE – omalizumab), interleukin antagonists (IL)-5 (anti-IL-5 – mepolizumab, resizumab) and its receptor (anti-IL-5Rα – benralizumab), as well as antibodies, that selectively bind to the IL-4 and -13 receptor (anti-IL-4 /13Rα – dupilumab). The article presents data on the effectiveness of these drugs in relation to the key characteristics of SBA, formulates clinical and laboratory criteria, the study of which in real practice can potentially predict the likelihood of a clinical response to a particular type of biological therapy. An algorithm is proposed for choosing a targeted therapy strategy for patients with SBA, clinically associated with allergies, for patients with severe non-allergic eosinophilic BA and for patients with eosinophilic BA of a combined phenotype.Биологическая терапия бронхиальной астмы (БА) представляет собой современный метод лечения тяжелых форм заболевания, неконтролируемых при помощи традиционных фармакотерапевтических подходамов. В настоящее время в мире зарегистрированы 5 препаратов моноклональных антител (АТ) для лечения тяжелой бронхиальной астмы (ТБА) Т2-эндотипа (Т2-ТБА) – АТ, связывающие иммуноглобулин (Ig) Е (анти-IgE – омализумаб), антагонисты интерлейкина (IL)-5 (анти-IL-5 – меполизумаб, реслизумаб) и его рецептора (анти-IL-5Rα – бенрализумаб), а также АТ, избирательно связывающиеся с рецептором IL-4 и -13 (анти-IL-4/13Rα – дупилумаб). В статье приведены данные об эффективности указанных препаратов в отношении ключевых характеристик ТБА, сформулированы клинико-лабораторные критерии, при исследовании которых в реальной практике потенциально может быть предсказана вероятность клинического ответа на тот или иной вид биологической терапии. Предложен алгоритм выбора стратегии таргетной терапии для пациентов с ТБА, клинически ассоциированной с аллергией, для больных тяжелой неаллергической эозинофильной БА и для страдающих эозинофильной БА сочетанного фенотип

    Problems of implementation of national projects : breaking in the period of the pandemic and the way out of the crisis

    Get PDF
    Purpose: The purpose of the article is to find ways out of the crisis caused by the corona-virus pandemic when implementing national projects based on a comparative analysis of measures taken in different countries. Design/Methodology/Approach: the authors of the study rely on the methods of compara-tive legal studies, interpretation of legal concepts and regulatory legal acts. The authors proceed from the premise that the nature of regulatory goals and problems associated with COVID-19 in different countries also implies the possibility of using solutions that are simi-lar in their content. Findings: The authors conclude that large-scale economic and social projects are being implemented in many countries, while the success of such projects is determined not only and not so much by the amount of financing of the projected activities, but by the creation of an institutional and legal framework. The coronavirus pandemic has significantly slowed down the implementation of national projects in all countries of the world, howev-er, the problems arisen are solved in different countries in different ways. The most common measure to support national projects is extra funding, which could be directed to partici-pating companies or consumers of their products. However, solutions aimed at creating favorable conditions for doing business, as is done, for example, in the UK, deserve the highest praise. Practical Implications: The results could be implemented into the practice of the Russian Federation and other countries in order to resume the implementation of national projects in the context of overcoming the crisis situation caused by the spread of COVID-19. Originality/Value: The main contribution of this article is to conduct a comparative legal analysis of the regulation of national projects and measures to overcome the crisis situa-tion, implemented in Russia, the USA, Great Britain and European countries.peer-reviewe

    Fluorine atoms interaction with the nanoporous materials: experiment and DFT simulation

    No full text
    Fluorine atoms interactions with organosilicate glass (OSG)-based low-κ dielectric films are experimentally and theoretically studied. One-dimensional 1-D Monte Carlo & gas-surface kinetics (MC&GSK) model and density functional theory (DFT) simulations used for the development of the multi-step mechanism of OSG films damage and etching are further verified on FTIR spectroscopy data. DFT method is applied to calculate vibrational mode frequencies and their shifts under F atoms flux. In the frame of 1-D model, evolutions of the SiCH3 and appeared SiCHxFy surface groups distributions inside the porous films are calculated as a function of F atoms dose. F atoms quasi-chemisorption on surface SiOx groups accompanied by fourth-coordinated Si atoms transition to pentavalent Si states is related with the experimentally observed fast fluorination stage and vibrational frequency shifts. In addition, quasi-chemisorbed F atoms induce the weakening of the adjacent Si–O bonds in OxSiFy surface complexes promoting breaks of these Si–O bonds under further F atoms attacks. Quasi-chemisorbed F atoms could be also responsible for F atoms recombination on SiOx surfaces

    Experimental and DFT study of nitrogen atoms interactions with SiOCH low-

    No full text
    Damage of porous organosilicate glass (OSG) films with low dielectric constants (low-κ films) in plasma processing is a critical problem for modern microelectronics. For this problem, understanding and revealing of basic reaction steps for radicals etching and damage are of importance. Previously we have studied experimentally and theoretically the etching and damage of low-κ dielectric films under oxygen and fluorine atoms. Here the effects of N atoms on OSG films are studied experimentally by Fourier Transform InfraRed (FTIR) spectroscopy method and theoretically by density functional theory (DFT) method. Experimental FTIR spectra are compared with calculated vibrational spectra to reveal the relevant surface SiCHxNy groups which could be produced in multi-step reactive collisions of N atoms in ground and lower metastable states with OSG low-κ dielectric films

    An Antimicrobial Copper–Plastic Composite Coating: Characterization and In Situ Study in a Hospital Environment

    No full text
    A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating process, a polymer film is formed on top of the copper layer. Comparative in situ studies of microbial contamination have shown that the copper-coated buttons have a significant antimicrobial effect compared to standard buttons. Analysis of swabs over a 22-week study in a hospital environment showed that the frequency of contamination for a copper-coated button with various microorganisms was 2.7 times lower than that of a control button. The presented results allow us to consider the developed copper coating for plastic switches an effective alternative method in the fight against healthcare-associated infections

    Data publication: Modification of Porous Ultralow‑k Film by Vacuum Ultraviolet Emission

    No full text
    Modification of spin-on-deposited porous PMO (periodic mesoporous organosilica) ultralow-k (ULK) SiCOH films (k = 2.33) containing both methyl terminal and methylene bridging groups by vacuum ultraviolet (VUV) emission from Xe plasma is studied. The temporal evolution of chemical composition, internal defects, and morphological properties (pore structure transformation) is studied by using Fourier transform infrared spectroscopy, in situ laser ellipsometry, spectroscopic ellipsometry, ellipsometric porosimetry (EP), positron-annihilation lifetime spectroscopy (PALS), and Doppler broadening positron-annihilation spectroscopy. Application of the different advanced diagnostics allows making conclusions on the dynamics of the chemical composition and pore structure. The time frame of the VUV exposure in the current investigation can be divided into two phases. During the first short phase, film loses almost all of its surface methyl and matrix bridging groups. An increase of material porosity due to removal of methyl groups with simultaneous matrix shrinkage is found by in situ ellipsometry. The removal of bridging bonds leads to an increase of matrix intrinsic porosity. Nevertheless, when the treated material is exposed to the ambient air, the sizes of micro- and mesopores and pores interconnectivity decrease with the VUV exposure time according to PAS and EP data. The last is the result of the additional film shrinkage caused by atmosphere exposure. During the second phase the increase of mesopore size is detected by both EP and PAS. The increase of mesopore size goes all the time as it is expected from in situ ellipsometry, but it is masked by the air exposure
    corecore