30 research outputs found

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease

    A critical role of nitric oxide in human immunodeficiency virus type 1-induced hyperresponsiveness of cultured monocytes.

    No full text
    BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) infection leads to a general exhaustion of the immune system. Prior to this widespread decline of immune functions, however, there is an evident hyperactivation of the monocyte/macrophage arm. Increased levels of cytokines and other biologically active molecules produced by activated monocytes may contribute to the pathogenesis of HIV disease both by activating expression of HIV-1 provirus and by direct effects on cytokine-sensitive tissues, such as lung or brain. In this article, we investigate mechanisms of hyperresponsiveness of HIV-infected monocytes. MATERIALS AND METHODS: The study was performed on monocyte cultures infected in vitro with a monocytetropic strain HIV-1ADA. Cytokine production was induced by stimulation of cultures with lipopolysaccharides (LPS) and measured by ELISA. To study involvement of nitric oxide (NO) in the regulation of cytokine expression, inhibitors of nitric oxide synthase (NOS) or chemical donors of NO were used. RESULTS: We demonstrate that infection with HIV-1 in vitro primes human monocytes for subsequent activation with LPS, resulting in increased production of pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin 6 (IL-6). This priming effect can be blocked by Ca(2+)-chelating agents and by the NOS inhibitor L-NMMA, but not by hemoglobin. It could be reproduced on uninfected monocyte cultures by using donors of NO, but not cGMP, together with LPS. CONCLUSIONS: NO, which is expressed in HIV-1-infected monocyte cultures, induces hyperresponsiveness of monocytes by synergizing with calcium signals activated in response to LPS stimulation. This activation is cGMP independent. Our findings demonstrate the critical role of NO in HIV-1-specific hyperactivation of monocytes

    Partitioning of HIV-1 Gag and Gag-Related Proteins to Membranes †

    No full text

    Viral protein R regulates nuclear import of the HIV-1 pre-integration complex.

    No full text
    Replication of human immunodeficiency virus type 1 (HIV-1) in non-dividing cells critically depends on import of the viral pre-integration complex into the nucleus. Genetic evidence suggests that viral protein R (Vpr) and matrix antigen (MA) are directly involved in the import process. An in vitro assay that reconstitutes nuclear import of HIV-1 pre-integration complexes in digitonin-permeabilized cells was used to demonstrate that Vpr is the key regulator of the viral nuclear import process. Mutant HIV-1 pre-integration complexes that lack Vpr failed to be imported in vitro, whereas mutants that lack a functional MA nuclear localization sequence (NLS) were only partially defective. Strikingly, the import defect of the Vpr- mutant was rescued when recombinant Vpr was re-added. In addition, import of Vpr- virus was rescued by adding the cytosol of HeLa cells, where HIV-1 replication had been shown to be Vpr-independent. In a solution binding assay, Vpr associated with karyopherin alpha, a cellular receptor for NLSs. This association increased the affinity of karyopherin alpha for basic-type NLSs, including that of MA, thus explaining the positive effect of Vpr on nuclear import of the HIV-1 pre-integration complex and BSA-NLS conjugates. These results identify the biochemical mechanism of Vpr function in transport of the viral pre-integration complex to, and across, the nuclear membrane
    corecore