60 research outputs found

    A very mild phenotype in six individuals of a three-generation family with the novel HRAS variant c.176C > G p.(Ala59Gly): Emergence of a new HRAS-related RASopathy distinct from Costello syndrome

    Full text link
    Costello syndrome is a clinically recognizable, severe neurodevelopmental disorder caused by heterozygous activating variants in HRAS. The vast majority of affected patients share recurring variants affecting HRAS codons 12 and 13 and a relatively uniform phenotype. Here, we report the unique and attenuated phenotype of six individuals of an extended family affected by the HRAS variant c.176C>T p.(Ala59Gly), which, to our knowledge, has never been reported as a germline variant in patients so far. HRAS Alanine 59 has been previously functionally investigated as an oncogenic hotspot and the p.Ala59Gly substitution was shown to impair intrinsic GTP hydrolysis. All six individuals we report share a phenotype of ectodermal anomalies and mild features suggestive of a RASopathy, reminiscent of patients with Noonan syndrome-like disorder with loose anagen hair. All six are of normal intelligence, none have a history of failure to thrive or malignancy, and they have no known cardiac or neurologic pathologies. Our report adds to the previous reports of patients with rare variants affecting amino acids located in the SWITCH II/G3 region of HRAS and suggests a consistent, attenuated phenotype distinct from classical Costello syndrome. We propose the definition of a new distinct HRAS-related RASopathy for patients carrying HRAS variants affecting codons 58, 59, 60

    New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics

    Full text link
    PURPOSE A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism

    The current benefit of genome sequencing compared to exome sequencing in patients with developmental or epileptic encephalopathies

    Full text link
    Background: As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. Methods: Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. Results: A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. Conclusion: The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future

    Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation

    Get PDF
    A decade after the designation of MED13L as a gene and its link to intellectual disability (ID) and dextro-looped transposition of great arteries in 2003, we previously described a recognizable syndrome due to MED13L haploinsufficiency. Subsequent reports of 22 further patients diagnosed by genome-wide testing further delineated the syndrome with expansion of the phenotypic spectrum and showed reduced penetrance for congenital heart defects. We now report two novel patients identified by whole exome sequencing, one with a de novo MED13L truncating mutation and the other with a de novo missense mutation. The first patient indicates some facial resemblance to Kleefstra syndrome as a novel differential diagnosis, and the second patient shows, for the first time, recurrence of a MED13L missense mutation (p.(Asp860Gly)). Notably, our in silico modelling predicted this missense mutation to decrease the stability of an alpha-helix and thereby affecting the MED13L secondary structure, while the majority of published missense mutations remain variants of uncertain significance. Review of the reported patients with MED13L haploinsufficiency indicates moderate to severe ID and facial anomalies in all patients, as well as severe speech delay and muscular hypotonia in the majority. Further common signs include abnormal MRI findings of myelination defects and abnormal corpus callosum, ataxia and coordination problems, autistic features, seizures/abnormal EEG, or congenital heart defects, present in about 20–50% of the patients. With reference to facial anomalies, the majority of patients were reported to show broad/prominent forehead, low set ears, bitemporal narrowing, upslanting palpebral fissures, depressed/flat nasal bridge, bulbous nose, and abnormal chin, but macroglossia and horizontal eyebrows were also observed in ∼30%. The latter are especially important in the differential diagnosis of 1p36 deletion and Kleefstra syndromes, while the more common facial gestalt shows some resemblance to 22q11.2 deletion syndrome. Despite the fact that MED13L was found to be one of the most common ID genes in the Deciphering Developmental Disorders Study, further detailed patient descriptions are needed to explore the full clinical spectrum, potential genotype-phenotype correlations, as well as the role of missense mutations and potential mutational hotspots along the gene

    The genetic landscape and clinical implication of pediatric Moyamoya angiopathy in an international cohort

    Full text link
    Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients

    Danger of Herbal Tea: A Case of Acute Cholestatic Hepatitis Due to; Artemisia annua; Tea

    Get PDF
    Background:; Artemisia annua; is a Chinese medicinal herb. Artemisinin-derivatives are recommended as part of a combination treatment for uncomplicated malaria. Herbal and dietary supplements (HDS) are increasingly used worldwide and HDS-induced liver injury is becoming a growing concern.; Case Report:; We present the first case of severe acute cholestatic hepatitis due to the intake of; Artemisia annua; tea as chemoprophylaxis for malaria in a patient returning from Ethiopia. The patients presented with jaundice, elevated transaminases, and parameters of cholestasis (total bilirubin 186.6 μmol/L, conjugated bilirubin 168.5 μmol/L). A liver biopsy showed a portal hepatitis with lymphocytic infiltration of the bile ducts and diffuse intra-canalicular and intra-cytoplasmic bilirubinostasis. The toxicologic analysis of the Artemisia tea revealed the ingredients arteannuin b, deoxyartemisin, campher, and scopoletin. There were no other identifiable etiologies of liver disease. The Roussel Uclaf Causality Assessment Method (RUCAM) score assessed a "probably" causal relationship. Sequencing of genes encoding for hepatic transporters for bile acid homeostasis (BSEP, MDR3, and FIC1) found no genetic variants typically associated with hereditary cholestasis syndromes. Normalization of bilirubin occurred 3 months after the onset of disease.; Conclusion:; The use of artemisinin-derivatives for malaria prevention is ineffective and potentially harmful and should thus be discouraged. Moreover, the case demonstrates our as yet inadequate understanding of the pathophysiology and susceptibility to HDS induced liver injury

    Assessing clinical utility of preconception expanded carrier screening regarding residual risk for neurodevelopmental disorders

    Full text link
    The magnitude of clinical utility of preconception expanded carrier screening (ECS) concerning its potential to reduce the risk of affected offspring is unknown. Since neurodevelopmental disorders (NDDs) in their offspring is a major concern of parents-to-be, we addressed the question of residual risk by assessing the risk-reduction potential for NDDs in a retrospective study investigating ECS with different criteria for gene selection and definition of pathogenicity. We used exome sequencing data from 700 parents of children with NDDs and blindly screened for carrier-alleles in up to 3046 recessive/X-linked genes. Depending on variant pathogenicity thresholds and gene content, NDD-risk-reduction potential was up to 43.5% in consanguineous, and 5.1% in nonconsanguineous couples. The risk-reduction-potential was compromised by underestimation of pathogenicity of missense variants (false-negative-rate 4.6%), inherited copy-number variants and compound heterozygosity of one inherited and one de novo variant (0.9% each). Adherence to the ACMG recommendations of restricting ECS to high-frequency genes in nonconsanguineous couples would more than halve the detectable inherited NDD-risk. Thus, for optimized clinical utility of ECS, screening in recessive/X-linked genes regardless of their frequency (ACMG Tier-4) and sensible pathogenicity thresholds should be considered for all couples seeking ECS

    Missense variants in ANO4 cause sporadic encephalopathic or familial epilepsy with evidence for a dominant-negative effect

    Get PDF
    Anoctamins are a family of Ca2+^{2+}-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+^{2+} binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patchclamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+^{2+}-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+^{2+}-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease

    Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly

    Get PDF
    Purpose: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. Methods: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). Results: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). Conclusion: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways
    • …
    corecore