159 research outputs found

    TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication

    Get PDF
    The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers

    TRIM25 targets p300 for degradation

    Get PDF
    p300 is an important transcriptional co-factor. By stimulating the transfer of acetyl residues onto histones and several key transcription factors, p300 enhances transcriptional initiation and impacts cellular processes including cell proliferation and cell division. Despite its importance for cellular homeostasis, its regulation is poorly understood. We show that TRIM25, a member of the TRIM protein family, targets p300 for proteasomal degradation. However, despite TRIM25’s RING domain and E3 activity, degradation of p300 by TRIM25 is independent of TRIM25-mediated p300 ubiquitination. Instead, TRIM25 promotes the interaction of p300 with dynein, which ensures a microtubule-dependent transport of p300 to cellular proteasomes. Through mediating p300 degradation, TRIM25 affects p300-dependent gene expression

    The Tumor Coagulome as a Transcriptional Target and a Potential Effector of Glucocorticoids in Human Cancers

    Get PDF
    Background: The coagulome, defined as the repertoire of genes that locally regulate coagulation and fibrinolysis, is a key determinant of vascular thromboembolic complications of cancer. In addition to vascular complications, the coagulome may also regulate the tumor microenvironment (TME). Glucocorticoids are key hormones that mediate cellular responses to various stresses and exert anti-inflammatory effects. We addressed the effects of glucocorticoids on the coagulome of human tumors by investigating interactions with Oral Squamous Cell Carcinoma, Lung Adenocarcinoma, and Pancreatic Adenocarcinoma tumor types. Methods: We analyzed the regulation of three essential coagulome components, i.e., the tissue factor (TF), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor-1 (PAI-1) in cancer cell lines exposed to specific agonists of the glucocorticoid receptor (GR) (dexamethasone and hydrocortisone). We used QPCR, immunoblots, small-interfering RNA, Chromatin immunoprecipitation sequencing (ChIPseq) and genomic data from whole tumor and single-cell analyses. Results: Glucocorticoids modulate the coagulome of cancer cells through a combination of indirect and direct transcriptional effects. Dexamethasone directly increased PAI-1 expression in a GR-dependent manner. We confirmed the relevance of these findings in human tumors, where high GR activity/high SERPINE1 expression corresponded to a TME enriched in active fibroblasts and with a high TGF-β response. Conclusion: The transcriptional regulation of the coagulome by glucocorticoids that we report may have vascular consequences and account for some of the effects of glucocorticoids on the TME.</p

    Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βlll spectrin

    Get PDF
    The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150Glued, which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L

    A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples.

    Get PDF
    BACKGROUND: The Estrogen Receptor alpha (ERα) is the key transcriptional regulator in luminal breast cancer and is therefore the main target for adjuvant treatment of this subtype. Luminal gene signatures are dictated by the transcriptional capacities of ERα, which are a direct consequence of the receptors binding preference at specific sites on the chromatin. The identification of ERα binding signatures on a genome-wide level has greatly enhanced our understanding of Estrogen Receptor biology in cell lines and tumours, but the technique has its limitations with respect to its applicability in limited amounts of tumour tissue. RESULTS: Here, we present a refinement of the ChIP-seq procedures to enable transcription factor mapping on limited amounts of tissue culture cells as well as from a limited amount of tumor tissue derived from core needle biopsies. Our approach uses a carrier that can be removed prior to DNA amplification and sequencing. CONCLUSION: We illustrate the applicability of this refined technology by mapping the ERα genome-wide chromatin binding landscape in core needle biopsy material from primary breast tumours. With this, our refined technology permits for a high-resolution transcription factor mapping even from clinical samples

    Protein Kinase A-induced tamoxifen resistance is mediated by anchoring protein AKAP13

    Get PDF
    Univariate analysis for different AKAP13 probes. Table S2. Univariate analysis. Table S3. Multivariate analysis. (PDF 64 kb

    Spatial Separation of HLA-DM/HLA-DR Interactions within MIIC and Phagosome-Induced Immune Escape

    Get PDF
    SummaryMajor Histocompatibility Complex (MHC) class II molecules, including Human Leukocyte Antigen (HLA)-DR, present peptide fragments from proteins degraded in the endocytic pathway. HLA-DR is targeted to late-endocytic structures named MHC class II-containing Compartments (MIIC), where it interacts with HLA-DM. This chaperone stabilizes HLA-DR during peptide exchange and is critical for successful peptide loading. To follow this process in living cells, we have generated cells containing HLA-DR3/Cyan Fluorescent Protein (CFP), HLA-DM/Yellow Fluorescent Protein (YFP), and invariant chain. HLA-DR/DM interactions were observed by Fluorescence Resonance Energy Transfer (FRET). These interactions were pH insensitive, yet occurred only in internal structures and not at the limiting membrane of MIIC. In a cellular model of infection, phagosomes formed a limiting membrane surrounding internalized Salmonella. HLA-DR and HLA-DM did not interact in Salmonella-induced vacuoles, and HLA-DR was not loaded with antigens. The absence of HLA-DR/DM interactions at the limiting membrane prevents local loading of MHC class II molecules in phagosomes. This may allow these bacteria to successfully evade the immune system

    Targetable ERBB2 mutation status is an independent marker of adverse prognosis in estrogen receptor positive, ERBB2 non-amplified primary lobular breast carcinoma: a retrospective in silico analysis of public datasets

    Get PDF
    © 2020 The Author(s). Background: Invasive lobular carcinoma (ILC) accounts for 10-15% of primary breast cancers and is typically estrogen receptor alpha positive (ER+) and ERBB2 non-amplified. Somatic mutations in ERBB2/3 are emerging as a tractable mechanism underlying enhanced human epidermal growth factor 2 (HER2) activity. We tested the hypothesis that therapeutically targetable ERBB2/3 mutations in primary ILC of the breast associate with poor survival outcome in large public datasets. Methods: We performed in silico comparison of ERBB2 non-amplified cases of ER+ stage I-III primary ILC (N = 279) and invasive ductal carcinoma (IDC, N = 1301) using METABRIC, TCGA, and MSK-IMPACT information. Activating mutations amenable to HER2-directed therapy with neratinib were identified using existing functional data from in vitro cell line and xenograft experiments. Multivariate analysis of 10-year overall survival (OS) with tumor size, grade, and lymph node status was performed using a Cox regression model. Differential gene expression analyses by ERBB2 mutation and amplification status was performed using weighted average differences and an in silico model of response to neratinib derived from breast cancer cell lines. Results: ILC tumors comprised 17.7% of all cases in the dataset but accounted for 47.1% of ERBB2-mutated cases. Mutations in ERBB2 were enriched in ILC vs. IDC cases (5.7%, N = 16 vs. 1.4%, N = 18, p < 0.0001) and clustered in the tyrosine kinase domain of HER2. ERBB3 mutations were not enriched in ILC (1.1%, N = 3 vs. 1.8%, N = 23; p = 0.604). Median OS for patients with ERBB2-mutant ILC tumors was 66 months vs. 211 months for ERBB2 wild-type (p = 0.0001), and 159 vs. 166 months (p = 0.733) for IDC tumors. Targetable ERBB2 mutational status was an independent prognostic marker of 10-year OS - but only in ILC (hazard ratio, HR = 3.7, 95% CI 1.2-11.0; p = 0.021). Findings were validated using a novel ERBB2 mutation gene enrichment score (HR for 10-year OS in ILC = 2.3, 95% CI 1.04-5.05; p = 0.040). Conclusions: Targetable ERBB2 mutations are enriched in primary ILC and their detection represents an actionable strategy with the potential to improve patient outcomes. Biomarker-led clinical trials of adjuvant HER-targeted therapy are warranted for patients with ERBB2-mutated primary ILC

    Compartmentalization of androgen receptors at endogenous genes in living cells

    Get PDF
    A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.</p
    • …
    corecore