85 research outputs found

    The early dynamical evolution of cool, clumpy star clusters

    Get PDF
    Observations and theory both suggest that star clusters form sub-virial (cool) with highly sub-structured distributions. We perform a large ensemble of N-body simulations of moderate-sized (N = 1000) cool, fractal clusters to investigate their early dynamical evolution. We find that cool, clumpy clusters dynamically mass segregate on a short timescale, that Trapezium-like massive higher-order multiples are commonly formed, and that massive stars are often ejected from clusters with velocities > 10 km s−1 (c.f. the average escape velocity of 2.5 km s−1 ). The properties of clusters also change rapidly on very short timescales. Young clusters may also undergo core collapse events, in which a dense core containing massive stars is hardened due to energy losses to a halo of lower-mass stars. Such events can blow young clusters apart with no need for gas expulsion. The warmer and less substructured a cluster is initially, the less extreme its evolution

    Estimating Space-Dependent Coefficients for 1D Transport Using Gaussian Processes as State Estimator in the Frequency Domain

    Get PDF
    This letter presents a method to estimate the space-dependent transport coefficients (diffusion, convection, reaction, and source/sink) for a generic scalar transport model, e.g., heat or mass. As the problem is solved in the frequency domain, the complex valued state as a function of the spatial variable is estimated using Gaussian process regression. The resulting probability density function of the state, together with a semi-discretization of the model, and a linear parameterization of the coefficients are used to determine the maximum likelihood solution for these space-dependent coefficients. The proposed method is illustrated by simulations

    Harvesting graphics power for MD simulations

    Get PDF
    We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms suitable for short-ranged and long-ranged interactions, and a congruential shift random number generator are presented. The performance of the GPU's is compared to their main processor counterpart. We achieve speedups of up to 80, 40 and 150 fold, respectively. With newest generation of GPU's one can run standard MD simulations at 10^7 flops/$.Comment: 12 pages, 5 figures. Submitted to Mol. Si

    The Lazarus project: A pragmatic approach to binary black hole evolutions

    Full text link
    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and non-linear treatments near the interface. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl scalar ψ4\psi_4 and its time derivative ∂tψ4\partial_t\psi_4 with both objects being first order coordinate and tetrad invariant. The Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use of improved full numerical evolutions and outline the approach to a full understanding of astrophysical black hole binary systems which we can now pursue.Comment: New typos found in the version appeared in PRD. (Mostly found and collected by Bernard Kelly

    A stochastic network with mobile users in heavy traffic

    Full text link
    We consider a stochastic network with mobile users in a heavy-traffic regime. We derive the scaling limit of the multi-dimensional queue length process and prove a form of spatial state space collapse. The proof exploits a recent result by Lambert and Simatos which provides a general principle to establish scaling limits of regenerative processes based on the convergence of their excursions. We also prove weak convergence of the sequences of stationary joint queue length distributions and stationary sojourn times.Comment: Final version accepted for publication in Queueing Systems, Theory and Application

    Optimal duration of dual antiplatelet therapy after percutaneous coronary intervention or after acute coronary syndrome

    Get PDF
    To prevent recurrent ischaemic events, dual antiplatelet therapy (DAPT) is the standard of care after percutaneous coronary intervention and in the treatment of acute coronary syndrome. Recent evidence supports an adjusted DAPT duration in selected patients. The current paper aims to encourage cardiologists to actively search for patients benefiting from either shorter or prolonged duration DAPT and proposes an algorithm to identify patients who are likely to benefit from such an alternative strategy. Individualised DAPT duration should be considered in high-risk anatomic and/or clinical subgroups or in patients at increased haemorrhagic risk with low ischaemic risk. Both thrombotic and haemorrhagic risk should be assessed in all patients. In patients undergoing percutaneous coronary intervention, the interventional cardiologist could advise on the minimal duration of DAPT. However, in contrast to the minimum duration of DAPT for stent thrombosis prevention, longer duration DAPT is aimed at prevention of spontaneous myocardial infarction, and not at stent thrombos

    Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates

    Get PDF
    Relativistic spin-orbit and spin-spin couplings has been shown to modify the gravitational waveforms expected from inspiraling binaries with a black hole and a neutron star. As a result inspiral signals may be missed due to significant losses in signal-to-noise ratio, if precession effects are ignored in gravitational-wave searches. We examine the sensitivity of the anticipated loss of signal-to-noise ratio on two factors: the accuracy of the precessing waveforms adopted as the true signals and the expected distributions of spin-orbit tilt angles, given the current understanding of their physical origin. We find that the results obtained using signals generated by approximate techniques are in good agreement with the ones obtained by integrating the 2PN equations. This shows that a complete account of all high-order post-Newtonian effects is usually not necessary for the determination of detection efficiencies. Based on our current astrophysical expectations, large tilt angles are not favored and as a result the decrease in detection rate varies rather slowly with respect to the black hole spin magnitude and is within 20--30% of the maximum possible values.Comment: 7 fig., accepted by Phys. Rev. D Minor modification

    Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison)

    Get PDF
    SARS-CoV-2, the causative agent of COVID-19, caused respiratory disease outbreaks with increased mortality in 4 mink farms in the Netherlands. The most striking postmortem finding was an acute interstitial pneumonia, which was found in nearly all examined mink that died at the peak of the outbreaks. Acute alveolar damage was a consistent histopathological finding in mink that died with pneumonia. SARS-CoV-2 infections were confirmed by detection of viral RNA in throat swabs and by immunohistochemical detection of viral antigen in nasal conchae, trachea, and lung. Clinically, the outbreaks lasted for about 4 weeks but some animals were still polymerase chain reaction–positive for SARS-CoV-2 in throat swabs after clinical signs had disappeared. This is the first report of the clinical and pathological characteristics of SARS-CoV-2 outbreaks in mink farms

    "Author! Author!" : Shakespeare and biography

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe

    Model-based estimation of iohexol plasma clearance for pragmatic renal function determination in the renal transplantation setting

    Get PDF
    Background Iohexol plasma clearance-based glomerular filtration rate (GFR) determination provides an accurate method for renal function evaluation. This technique is increasingly advocated for clinical situations that dictate highly accurate renal function assessment, as an alternative to conventional serum creatinine-based methods with limited accuracy or poor feasibility. In the renal transplantation setting, this particularly applies to living renal transplant donor eligibility screening, renal transplant function monitoring and research purposes. The dependency of current iohexol GFR estimation techniques on extensive sampling, however, has limited its clinical application. We developed a population pharmacokinetic model and limited sampling schedules, implemented in the online InsightRX precision dosing platform, to facilitate pragmatic iohexol GFR assessment. Methods Iohexol concentrations (n = 587) drawn 5 min to 4 h after administration were available from 67 renal transplant recipients and 41 living renal transplant donor candidates with measured iohexol GFRs of 27-117 mL/min/1.73 m(2). These were split into a model development (n = 72) cohort and an internal validation (n = 36) cohort. External validation was performed with 1040 iohexol concentrations from 268 renal transplant recipients drawn between 5 min and 4 h after administration, and extended iohexol curves up to 24 h from 11 random patients with impaired renal function. Limited sampling schedules based on one to four blood draws within 4 h after iohexol administration were evaluated in terms of bias and imprecision, using the mean relative prediction error and mean absolute relative prediction error. The total deviation index and percentage of limited sampling schedule-based GFR predictions within +/- 10% of those of the full model (P-10) were assessed to aid interpretation. Results Iohexol pharmacokinetics was best described with a two-compartmental first-order elimination model, allometrically scaled to fat-free mass, with patient type as a covariate on clearance and the central distribution volume. Model validity was confirmed during the internal and external validation. Various limited sampling schedules based on three to four blood draws within 4 h showed excellent predictive performance (mean relative prediction error 97%). The best limited sampling schedules based on three to four blood draws within 3 h showed reduced predictive performance (mean relative prediction error = 85%), but may be considered for their enhanced clinical feasibility when deemed justified. Conclusions Our online pharmacometric tool provides an accurate, pragmatic, and ready-to-use technique for measured GFR-based renal function evaluation for clinical situations where conventional methods lack accuracy or show limited feasibility. Additional adaptation and validation of our model and limited sampling schedules for renal transplant recipients with GFRs below 30 mL/min is warranted before considering this technique in these patients.Nephrolog
    • 

    corecore