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Estimating Space-Dependent Coefficients for 1D Transport using
Gaussian Processes as State Estimator in the Frequency Domain

Ricky J. R. van Kampen1,2, Matthijs van Berkel1, and Hans Zwart3,4

Abstract— This letter presents a method to estimate the
space-dependent transport coefficients (diffusion, convection,
reaction, and source/sink) for a generic scalar transport model,
e.g. heat or mass. As the problem is solved in the frequency
domain, the complex valued state as a function of the spatial
variable is estimated using Gaussian process regression. The
resulting probability density function of the state, together with
a semi-discretization of the model, and a linear parameteriza-
tion of the coefficients are used to determine the maximum
likelihood solution for these space-dependent coefficients. The
proposed method is illustrated by simulations.

I. INTRODUCTION
Scalar transport (e.g. heat or mass) plays an important

role in many different fields. For example, the efficiency
of a nuclear fusion reactor is mainly determined by how
much heat and particles the core plasma loses to the reactor
wall [1]. Another example is given in the field of hydrology,
where the goal is to identify hot spots for contaminants
and nutrients in stream beds as a result of vertical ground
water fluxes [2]. Therefore, researchers require models which
can be used for simulation, analysis, prediction, diagnosis
and control of generic scalar transport. For most physical
systems, these transport models are obtained using first
principles, however the (exact) parameters to these models
are unknown. Hence, data-driven estimation of the unknown
physical parameters is necessary to complete the model,
which is also known as an inverse problem or grey-box
modeling.

The standard method to estimate the unknown parameters
(diffusion, convection, reaction, and source/sink) in these
typically infinite-dimensional models that describe the physi-
cal quantity, e.g. the temperature or density, is by minimizing
the output error criterion, i.e. taking the (weighted) sum
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of the squared error between the measured data and the
model output of a finite-dimensional approximation [3], [4].
As this approach does not impose constraints on the state’s
variation in-between sensors, the state is allowed to oscillate
(spatial aliasing) while the observed (output) error is zero.
Even though these oscillations are small in the state, the
errors in the estimated parameters are often significant, e.g.,
if they are based on the second derivative of the state
(diffusion). This is generally resolved by regularizing the
unknown parameters [3], [4], [5]. As pointed out in [6],
[7], this regularization is often artificial as there is usually
no a priori information on how the unknown parameters
change as function of the spatial variable. Therefore, another
option to add regularization is to first estimate the state as a
function of the spatial variable using the measurements, and
then perform the parameter estimation process [3], [6], [7],
[8]. This has the following advantages: (i) for an increasing
number of samples the finite approximations used in these
methods will converge towards the true solution, and so will
their estimates; (ii) the availability of prior information on
the state can be embedded in the state estimation process
(such as smoothness due to the underlying model); (iii) the
state estimate can be visually inspected for correctness and
validated by taking additional (spatial) measurements; (iv)
separating the state and parameter estimation process allows
one to write the parameter estimation problem as a, often
linear, regression problem [3], [6], [7]. Taking a frequency
domain approach, [6] performs the state estimation via spline
interpolation and exploits the linearity of the problem by
deriving a closed-form solution for the global optimum using
the ordinary least squares criterion. However, for uncertain
measurements this ordinary least squares solution is biased
as both, the output and the regressor can contain error terms.
Especially for the heterogeneous case, i.e. space-dependent
parameters, very little noise already results in poor estimates.
Under those circumstance this problem requires an errors-in-
variables approach. Therefore, the two main contributions of
this letter are extending the methodology proposed in [6] by
(i) determining the probability density function of the state
as a function of the spatial variable using Gaussian process
regression (GPR), and (ii) deriving a maximum likelihood
solution such that it can deal with uncertainty in an optimal
way when estimating the unknown parameters.

In contrast to other methods that use a Gaussian process
(GP) to estimate the state, e.g. [9], [10], [11], we perform
the GPR in the frequency domain instead of the time
domain. In this way, our method does not need to determine
the time derivative, which is often hard to estimate under
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noisy conditions; and we can work with smaller data sets
as in perturbation experiments only a limited number of
frequencies are informative, i.e. excited and above the noise
floor.

II. PROBLEM FORMULATION

The problem setup is specified as follows.
a) Model-Class: The estimation of the space-dependent

physical coefficients is based on a one-dimensional linear
parabolic partial differential equation (PDE) that describes
the state, e.g. temperature or mass concentration, around an
equilibrium point [12]:

∂tz = −∇ · (V z −D∇z) +Kz + Pφ, (1)

where z : X × T → R is a multi-variable function of a
bounded space x ∈ X := [xb, xe] ⊂ R and time t ∈ T :=
[t0, te] ⊆ R≥0

. The state z is understood point-wise in x and
t evaluated as z(x, t). The physical transport coefficients are
the diffusion D : X→ R>0, convection V : X→ R, reaction
K : X→ R, and the fixed spatially distributed source or sink
P : X→ R. The source/sink is manipulated in time only by
the external input φ : T→ R. For well-posedness, the PDE
is constrained at xb and xe by two (arbitrary) linear boundary
conditions. Moreover, the initial condition z(·, t0) is assumed
to be compatible with the model and its boundaries. Due to
linearity of the model, (1) can be considered in the frequency
domain without loss of information [13]. Hence, the generic
scalar transport equation in the frequency domain is

iωZ = −∇ · (V Z −D∇Z) +KZ + PΦ, (2)

with the Fourier transformed state Z = F(z) : X× Ω→ C,
input Φ = F(φ) : Ω → C, i2 = −1, and angular frequency
ω ∈ Ω ⊂ R.

b) Measurement data: The measurement signals
y(t) := col (y1(t), . . . , yM (t)) are assumed to be band-
limited measurements of the scalar transport state z at M > 2
fixed locations given by the set XM := {x̌1, . . . , x̌M} ⊆ X
and are disturbed by noise ε(t), i.e. ym = z(x̌m, t) + εm(t).
As we consider the problem in the frequency domain, we
assume the discrete Fourier transform (DFT) spectra Y(k) =
F(y) and Φ(k) to be processed such that it only contains the
forced response. This means that transients (non-steady-state
behavior, e.g. due to the initial condition) have been removed
by either waiting until the transient terms are diminished,
or compensating for it using (advanced) signal processing
techniques such as the local polynomial method [13], [14]
and hence, does not need to be considered further.

Additionally, we assume that the noise contributions are
circular complex normally distributed in the frequency do-
main, which imposes weak assumptions on the time domain
noise distribution [13]. As a result, the uncertainty of the
(processed) Fourier spectrum is also circular complex nor-
mally distributed, i.e. E{(Y−E{Y})(Y−E{Y})T} = 0 and
E{(Y − E{Y })(Y − E{Y})H} = CY, with the Hermitian
transpose denoted as H. Here, CY is either known or can be
estimated [13]. Moreover, due to linearity of the model, each
(excited) angular frequency ωk, with frequency bin k ∈ K, is

independent and only a finite number of the discrete angular
frequencies are informative, i.e., those which are present in
the (boundary) input and are above the noise level [13].
Therefore, we only consider those bins to be in K, and
excluded the DC and Nyquist frequency from the spectrum.
All these signal and noise assumptions are standard (weak)
assumptions for frequency domain analysis [13].

c) Problem definition: The goal is to estimate the
set of space-dependent coefficients, i.e. functions, Γ :=
{D,V,K, P} in (2), related to the physical quantities dif-
fusion, convection, etc., using the (processed) spectra Y(k)
and Φ(k). The (exact) boundary conditions that constrain
the generic scalar transport are often unknown as they may
depend on the equilibrium or unknown space-dependent
parameters. Therefore, the extremum measurements are used
as boundary inputs [15], [16], which reduces the domain
on which the space-dependent coefficients are estimated to
XE := [x̌1, x̌M ]. However, other linear boundary conditions
are allowed. Hence, the formal problem definition is

Problem 1. Given the processed data-set

D := {Y(k), CY(k),Φ(k) | k ∈ K, x̌m ∈ XM},

estimate the unknown functions Γ = {D,V,K, P} by min-
imizing a cost function V (D, Z(x, k; Γ)) over Γ such that
the solution Z(x, k; Γ) satisfies the model (2) subject to the
boundary conditions

Z(x̌1, k) = Y1(k), Z(x̌M , k) = YM (k), k ∈ K.

III. STATE ESTIMATION BY GAUSSIAN PROCESS
REGRESSION

As [6], [8] shows, to have a unique solution for the
coefficients, a continuous state Z is required. However, in
general, the state is only measured at a limited number of
spatial locations with uncertainty. To find the state Z as a
continuous function of the spatial variable, we resort to GPR,
because it takes the uncertainty into account and provides a
probability density function of the state estimate which can
then be used to determine the maximum likelihood solution
of the unknown coefficients.

A. Gaussian process regression

A GP is defined as a collection of random variables, any
finite number of which have a joint Gaussian distribution
[17]. Therefore, a GP f(x) is completely defined by its
mean function µ(x) and covariance function κ(x, x̂), and
is denoted as

f(x) ∼ GP (µ(x), κ(x, x̂)) . (3)

If the process is observed under some Gaussian dis-
tributed noise ε with a known covariance Cε, i.e. y =
col (f(x̌1), . . . , f(x̌M ))+ε, the joint prior distribution of the
measured values y at x̌ and the prior predictive distribution
f̂ at x̂ is given by[

y

f̂

]
∼ N

([
µ(x̌)
µ(x̂)

]
,

[
K(x̌, x̌) + Cε K(x̌, x̂)
K(x̂, x̌) K(x̂, x̂)

])
, (4)
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with the mean vector µ and covariance matrix K(x,x) for
which the v, w-th element has value κ(xv, xw). The posterior
predictive distribution after conditioning with the prior joint
distribution is given by,

f̂ | x̌,y, x̂ ∼ N
(
µf̂ , Cf̂

)
, (5)

µf̂ = µ(x̂)

+K(x̂, x̌)[K(x̌, x̌) + Cε]
−1 (y − µ(x̌)) ,

(6)

Cf̂ = K(x̂, x̂)

−K(x̂, x̌)[K(x̌, x̌) + Cε]
−1K(x̌, x̂),

(7)

which are the key equations for GPR [17]. Typically, the
covariance function, also called kernel, will have some free
parameters α, called hyperparameters, and are tuned by
maximizing the marginal likelihood, i.e. the likelihood that
the given prior has generated the observed data. This is equal
to minimizing the following cost function

VGP(α) = − (y − µ(x̌))
T

[K(x̌, x̌, α) + Cε]
−1

(y − µ(x̌))

− log (det (K(x̌, x̌, α) + Cε)) .
(8)

B. Complex valued Gaussian process regression

As the measurements are complex valued, the GPR should
be adopted accordingly. For the sake of simplicity, we
consider the state Z at each frequency separately and assume
it to be a zero mean circular complex GP which is a standard
assumption [18], [19]. However, we pose the additional
constraint that the covariance between the real and imaginary
part is zero. This allows us to use standard kernels for real
valued GPs while only limiting the information that is shared
between the real and imaginary part. The complex valued GP
is then given by the two joint real valued GPs[

Re (Z(x, k))
Im (Z(x, k))

]
∼ GP

([
0
0

]
,

[
κ(x, x̂, α) 0

0 κ(x, x̂, α)

])
,

(9)
denoted as ZRe ∼ GP (0, κRe(x, x̂)). The assumption of
a zero mean is not a drastic restriction as it does not
confine the mean of the posterior process to be zero [17].
However, in the future, a mean could be included to increase
interpretability of the model or add prior information. The
following transformation is used to go from complex valued
data to a real valued vector YRe and covariance matrix CYRe

YRe =
1

2

[
I I
−iI iI

] [
Y
Y

]
, (10)

CYRe
=

1

4

[
I I
−iI iI

] [
CY 0
0 CY

] [
I I
−iI iI

]H
(11)

where Y and CY denote the complex conjugates. Now, the
joint distribution of the real valued measurements and the
real valued state prediction ẐRe follow from (4) while (5)-
(7) are used to determine the (posterior) prediction ẐRe with
mean µẐRe

and covariance matrix CẐRe
. To complete the

state estimation process and go back to complex valued data,

the following inverse transformation is used

µẐ =
[
I iI

]
µẐRe

(12)

CẐ =
[
I iI

]
CẐRe

[
I iI

]H
. (13)

The kernel defines nearness or similarity between data
points and can be used to embed prior information [17]. As
we can use standard kernels for real valued GPs, we choose
the Matérn covariance function with ν = 5

2 as it enforces the
GP, i.e. the state Z, to be twice (mean square) differentiable
with respect to x. This corresponds to the solution of the
underlying model (2) that is at least twice differentiable. In
this way, we incorporate valuable prior knowledge of our
system into the state estimation procedure via GPR. For
completeness, the kernel is given by

κ(x, x̂, α) = σ2

(
1 +

√
5|x− x̂|
`

+
5(x− x̂)2

3`2

)
e−
√

5|x−x̂|
` ,

(14)
with hyperparameters α = col (σ, `) [17].

IV. FINITE-DIMENSIONAL PROBLEM
FORMULATION

To create a finite-dimensional problem, we take the same
approach as in [6], [16], starting with the linear parametriza-
tion of the unknown coefficients, followed by a finite differ-
ence scheme to approximate the spatial derivatives, resulting
in a linear matrix equality. Therefore, the model (2) is
reformulated such that it is linear in the state

iωkZ = DZ ′′ + (D′ − V )Z ′ + (K − V ′)Z + PΦ, (15)

where the prime (′) denotes the spatial derivative(s).

A. Parameterization of the unknown functions

To estimate the function γ ∈ Γ = {D,V,K, P}, we
assume that each function can be described by a finite sum
of basis functions Bγr weighted by θγ = col (θγ1 , . . . , θ

γ
Rγ ),

γ(x, θγ) =

Rγ∑
r=1

Bγr (x)θγr . (16)

Now, estimating the unknown coefficients is reduced to
estimating θ = col

(
θD, θV , θK , θP

)
∈ RR, with R =

RD+RV +RK+RP . The basis functions Bγr should satisfy
the model, which means that the derivative of BDr and BVr
must exist. As the user chooses these basis functions, we
consider these derivatives to be known.

B. Discretization procedure

The regression model requires spatial derivatives of the
state. These can be obtained from the GPs [20]. Alternatively,
by approximating them using a numerical scheme, we can
bypass the GPR by directly using the measurement data (Ẑ =
Y). This allows to study the effect of the state estimation
procedure on the estimated parameters and can help verify-
ing the outcome. The spatial derivatives are approximated
by a central finite difference scheme for non-equidistant
grids [21], as it is known that the finite-dimensional model
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will converge to the true infinite-dimensional model for
an increasing number of points. For this we consider the
discrete state vector Z(k) := col (Z(x1, k), . . . , Z(xN , k))
that contains N spatial sample points xj ∈ Xd ⊆ XE ,
j ∈ {1, . . . , N}, x1 = x̌1 and xN = x̌M . The derivatives
for Z ′′, Z ′ and Z can be written using the matrices L2,
L1, L0, e.g. Z′ = L1Z. By excluding the derivatives on
the boundaries, i.e. at x1 and xN , L2, L1 and L0 are of size
N−2×N . Moreover, in this way, the boundaries are directly
included as Dirichlet boundary conditions. Hence, (15) can
be expressed as

iωkL0Z = Â(θ)Z + B̂(θ)Φ, (17)

with

Â(θ) =

RD∑
r=1

(B̃Dr L2 + B̃D′r L1)θDr

−
RV∑
r=1

(B̃Vr L1 + B̃V ′r L0)θVr +

RK∑
r=1

B̃Kr L0θ
K
r

(18)

B̂(θ) =

RP∑
r=1

(B̃Pr 1)θPr , (19)

with B̃γr = diag (Bγr (x2), . . . , Bγr (xN−1))) as the diagonal
matrix for each basis function γ = D,V,K or P , and the
column vector of ones denoted by 1. Hence, the problem
is now written as a matrix equality that is bilinear in the
unknown parameters θ and the discrete state vector Z.
Furthermore, note that other linear boundary conditions can
be included by adapting Â and B̂ accordingly.

V. MAXIMUM LIKELIHOOD SOLUTION

For the maximum likelihood solution we assume that
the state estimate or measurement Ẑ is circular complex
normally distributed with a mean µẐ and a covariance matrix
CẐ. The cost function for the maximum likelihood is then
given by [13] as

V(θ, Ẑ) =
∑
k∈K

e(θ, µẐ, k)H[Ce(θ, CẐ, k)]−1e(θ, µẐ, k),

(20)
where the constant F ln(π)+ln

(
det
(
CẐ

))
has been omitted

as it does not affect the optima. The error vector from the
model (17) yields,

e(θ, µẐ, k) = (iωkL0 − Â(θ))µẐ(k)− B̂(θ)Φ(k) (21)

with the corresponding covariance matrix

Ce(θ, CẐ, k) = (iωkL0 − Â(θ))CẐ(k)(iωkL0 − Â(θ))H.
(22)

The maximum likelihood solution is found by minimizing
the cost function

θ̂ = arg min
θ
V(θ, Ẑ). (23)

A. Minimizing the cost function

As the cost function is non-convex, we choose to solve it
using iterative optimization methods such as Gauss-Newton
or Levenberg-Marquardts [22]. For this we resort to the
pseudo-Jacobian matrix which generally gives faster con-
vergence [23]. The parameter update ∆θ for the iterative
algorithms is found by solving the overdetermined set of
equations

J+(θ, Ẑ, k)∆θ =
[
Ce(θ, CẐ, k)

]− 1
2 e(θ, µẐ, k), (24)

for all k ∈ K. The pseudo-Jacobian J+ is given by

J+(θ, Ẑ, k) =
[
J1
+(θ, Ẑ, k) . . . JR+ (θ, Ẑ, k)

]
, (25)

Jr+(θ, Ẑ, k) =
[
Ce(θ, CẐ, k)

]− 1
2
(
∂θre(θ, µẐ, k)

− 1

2
∂θrCe(θ, CẐ, k)

[
Ce(θ, CẐ, k)

]−1
e(θ, µẐ, k)

)
,

(26)

where ∂θr denotes the partial derivative to the weight θr and
C

1
2 denotes the square root of the matrix [13], [23]. Note

that these derivatives are easily obtained as the problem is
formulated such that it is linear in the weights θ.

B. Calculation of the confidence intervals

The covariance matrix of the estimated weights θ̂ is given
by [13] as

Cθ̂ =

[
2Re

(∑
k∈K

J+(θ̂, Ẑ, k)HJ+(θ̂, Ẑ, k)

)]−1
. (27)

As the transformation from θ̂γ to γ is linear, the p confidence
interval for the estimated functions γ ∈ Γ is given by

Cγ(x, θ̂γ , p) = γ(x, θ̂γ)±
√

2σ2
γ(x)erf−1(p), (28)

where the variance of the function γ is determined using
propagation of uncertainty

σ2
γ =

[
Bγ1 (x) . . . BγRγ (x)

]
Cθ̂γ

[
Bγ1 (x) . . . BγRγ (x)

]T
,

(29)
where Cθ̂γ is a submatrix of the total covariance matrix Cθ̂.

VI. SIMULATION RESULTS

The merit of the proposed methodology is demonstrated
by generating a noisy data set and estimating the transport
coefficients using our early work [6] and the newly derived
maximum likelihood estimator with and without the novel
state estimation via GPR, including a noiseless data set to
focus on the differences GPR brings.

A. Data generation and state estimation

The simulation example is inspired by perturbative ex-
periments in the field of nuclear fusion [24], [25]. The
heat transport, (1), is generally analyzed on the normalized
domain X = [xb, xe] = [0, 1] of the minor plasma radius.
Here xb is at the center and xe is at the edge of the plasma.
The corresponding boundary conditions in the simulation are
Z ′(xb, ·) = 0 due to (axi)symmetry and Dirichlet boundary
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condition Z(xe, ·) = 0 due to a significant temperature
difference between core plasma ∼170 million ◦C and edge
plasma ∼1 million ◦C. Typical parameter functions used in
nuclear fusion are Dsim(x) = 5x3 − 0.005x+ 5, V sim(x) =
−15x2 + 0.005, Ksim(x) = 0 and

P sim(x) =

(
2 +

7√
π
e
−(x−0.35)2

(0.1)2 +
5.6√
π
e
−(x−0.6)2

(0.1)2

)
· 104,

which are equal to the functions in [6], except we set
Ksim(x) = 0 as the reaction coefficient is intrinsically
hard to estimate under noisy conditions compared to the
other coefficients [26]. Furthermore, we increased the power
deposition with four orders of magnitude to be more realistic
[25]. For the perturbation of the plasma temperature, a
microwave source is used, where the excitation signal Φ(ω)
is a block-wave of ω0 = 50π with a 70% duty cycle. Here,
only the first five harmonics ωk = kω0, k = 1, . . . , 5 are
informative and used for the estimation. The temperature data
is generated by simulation with a central finite difference grid
of 1001 sample points where the state is measured at M = 16
spatial sensors locations, positioned at x̌m = ∆x ·m, with
∆x = 0.058 and m = 1, . . . ,M . Noise from a circular
normal distribution with covariance matrix CY = σε(k)I
is added to the measurements, where ε is chosen such that
the maximum signal-to-noise ratio, SNR = |Ym(k)|

σε(k)
, is 40

dB and lowers with 2.5 dB for each harmonic (due to
transport). Hence, overall the SNRs range from 5 to 40 dB
at the different data points. For the first two harmonics, the
simulated and measured state with its p = 0.95 confidence
interval are shown in Fig. 1. Based on the measurements
and their uncertainty, the hyperparameters of the GP are
tuned by optimizing (8) for each frequency separately. Then,
the state estimate and covariance matrix is determined at
N = 76 points given by xn = 0.058 + 0.0116(n − 1),
with n = 1, . . . , N . The estimated state and its p = 0.95
confidence interval is also shown in Fig. 1.

B. Parameter estimation

For the estimation procedure, we consider that there is
some prior knowledge on the shape of the coefficients, i.e.
that D and V are polynomials and P Gaussian. Therefore,
the basis functions to estimate D and V are monomials
Bγr (x) = x(r−1) with RD = 7 and RV = 6, respectively.
The orders are significantly higher than the actual order such
that it is possible to find an exact (noiseless) description of D
and V . The basis functions for the source are B-splines, as it
is linear in the unknown parameters and can describe smooth
complex shapes. The B-splines are designed using the De
Boor’s algorithm [27] with RP = 14 control points and
degree 3. Thus, in total, there are R = 27 free parameters.
For a discussion on the effect of different basis functions,
see [6].

The iterative optimization algorithm needs an initial start-
ing point, which is set to θ = 1. The result of the newly
developed method with and without GPR is shown in Fig. 2
along with the simulated coefficients. To show the improve-
ment, the estimates using the methodology in [6] is also

Fig. 1. The simulated Z, measured Y and estimated state Ẑ shown in
the complex plane for the first harmonic (k = 1) at ω = 50 (top) and the
second harmonic (k = 2) at ω = 100 (bottom), including their p = 0.95
confidence interval.

shown in Fig. 2. Although the methodology in [6] comes with
a closed-form solution of the global optimum, the estimates
are poor. This is a result of the used ordinary least squares
criterion that results in an biased estimator for the given
problem formulation where the measurement uncertainty
enters the regression matrix. The newly derived maximum
likelihood estimators takes this into account resulting in
better estimates. Moreover, in combination with the GPR
as state estimator, spatial resolution and the quality of the
estimated coefficients is improved. Although we used the
GPs to apply regularization, there are still small oscillations
in the estimated coefficients. This is a result of the small
mismatch between the simulated and estimated state and the
many degrees of freedom of the coefficients. For comparison,
estimates based on noiseless observations are shown along
the other estimates in Fig. 2. The coefficients are estimated
accurately except at the boundaries of the domain. Especially
when using GPR. This is the result of small errors made
in the state estimation using the Gaussian process as the
amplitude of the signal quickly decreases due to the Dirichlet
boundary condition and there is less information available at
the boundaries for the GP.

VII. CONCLUSION AND DISCUSSION

This letter presents a novel method to estimate the un-
known space-dependent transport coefficients for 1D generic
scalar transport from noisy measurements by first determin-
ing the probability density function of the state and then
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Fig. 2. The estimated transport parameters: diffusion (top), convection
(middle), source location (bottom) and their p = 0.95 confidence interval,
estimated by the earlier presented ordinary least squares method (LS),
the novel maximum likelihood method (ML) and the maximum likelihood
method where the state and its uncertainty is estimated using Gaussian
process regression (GP-ML) where the ∗ indicates the noiseless scenario.

using this information to estimate the unknown parameters
with a maximum likelihood estimator. By separating the state
and parameter estimation problem, we avoid the artificial
regularization of the unknown transport coefficients, but
apply regularization on the state via GPR. This approach
has shown to be successful, although we must note that it
has a reduced performance at the boundaries of the domain.
However, we expect that this can be improved by including
more (prior) knowledge, e.g. by forcing the solution of
the GP to satisfy the model [9], [11], considering multiple
frequencies simultaneously and embedding the stability of
the transfer function into the kernel [18], [19], and simultane-
ously estimating the state and parameters by considering the
coefficients as hyperparameters of the GP [9]. Nonetheless,
in the current state, the proposed methodology shows to be a
significant improvement over the earlier linear least squares
method that results in biased estimates when considering
noise. Moreover, the novel derived maximum likelihood
estimator can also work with only measurement data in case
the GPR is distrusted and help verifying the correctness or
influence of the GPR results as we showed for the noiseless
scenario.
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