4,579 research outputs found

    The Origin of OB Runaway Stars

    Full text link
    About 20% of all massive stars in the Milky Way have unusually high velocities, the origin of which has puzzled astronomers for half a century. We argue that these velocities originate from strong gravitational interactions between single stars and binaries in the centers of star clusters. The ejecting binary forms naturally during the collapse of a young (\aplt 1\,Myr) star cluster. This model replicates the key characteristics of OB runaways in our galaxy and it explains the \apgt 100\,\Msun\, runaway stars around young star clusters, e.g. R136 and Westerlund~2. The high proportion and the distributions in mass and velocity of runaways in the Milky Way is reproduced if the majority of massive stars are born in dense and relatively low-mass (5000-10000 \Msun) clusters.Comment: to appear in Scienc

    A large-deviations analysis of the GI/GI/1 SRPT queue

    Get PDF
    We consider a GI/GI/1 queue with the shortest remaining processing time discipline (SRPT) and light-tailed service times. Our interest is focused on the tail behavior of the sojourn-time distribution. We obtain a general expression for its large-deviations decay rate. The value of this decay rate critically depends on whether there is mass in the endpoint of the service-time distribution or not. An auxiliary priority queue, for which we obtain some new results, plays an important role in our analysis. We apply our SRPT-results to compare SRPT with FIFO from a large-deviations point of view.Comment: 22 page

    Competition Leverage: How the Demand Side Affects Optimal Risk Adjustment

    Get PDF
    We study optimal risk adjustment in imperfectly competitive health insurance markets when high-risk consumers are less likely to switch insurer than low-risk consumers. First, we find that insurers still have an incentive to select even if risk adjustment perfectly corrects for cost differences among consumers. Consequently, the outcome is not efficient even if cost differences are fully compensated. To achieve first best, risk adjustment should overcompensate for serving high-risk agents to take into account the difference in mark- ups among the two types. Second, the difference in switching behavior creates a trade off between efficiency and consumer welfare. Reducing the difference in risk adjustment subsidies to high and low types increases consumer welfare by leveraging competition from the elastic low-risk market to the less elastic high-risk market. Finally, mandatory pooling can increase consumer surplus even further, at the cost of efficiency.health insurance;risk adjustment;imperfect competition;leverage

    Selective Contracting and Foreclosure in Health Care Markets

    Get PDF
    We analyze exclusive contracts between health care providers and insurers in a model where some consumers choose to stay uninsured. In case of a monopoly insurer, exclusion of a provider changes the distribution of consumers who choose not to insure. Although the foreclosed care provider remains active in the market for the non-insured, we show that exclusion leads to anti-competitive effects on this non-insured market. As a consequence exclusion can raise industry profits, and then occurs in equilibrium. Under competitive insurance markets, the anticompetitive exclusive equilibrium survives. Uninsured consumers, however, are now not better off without exclusion. Competition among insurers raises prices in equilibria without exclusion, as a result of a horizontal analogue to the double marginalization effect. Instead, under competitive insurance markets exclusion is desirable as long as no provider is excluded by all insurers.health insurance;uninsured;selective contracting;exclusion;foreclosure;anti-competitive effects

    Competition for Traders and Risk

    Get PDF
    Abstract: The financial crisis has been attributed partly to perverse incentives for traders at banks and has led policy makers to propose regulation of banks’ remuneration packages. We explain why poor incentives for traders cannot be fully resolved by only regulating the bank’s top executives, and why direct intervention in trader compensation is called for. We present a model with both trader moral hazard and adverse selection on trader abilities. We demonstrate that as competition on the labour market for traders intensifies, banks optimally offer top traders contracts inducing them to take more risk, even if banks fully internalize the costs of negative outcomes. In this way, banks can reduce the surplus they have to offer to lower ability traders. In addition, we find that increasing banks’ capital requirements does not unambiguously lead to reduced risk-taking by their top traders.optimal contracts;remuneration policy;imperfect competition;financial institutions;risk

    The Relation Between the Globular Cluster Mass and Luminosity Functions

    Full text link
    The relation between the globular cluster luminosity function (GCLF, dN/dlogL) and globular cluster mass function (GCMF, dN/dlogM) is considered. Due to low-mass star depletion, dissolving GCs have mass-to-light (M/L) ratios that are lower than expected from their metallicities. This has been shown to lead to an M/L ratio that increases with GC mass and luminosity. We model the GCLF and GCMF and show that the power law slopes inherently differ (1.0 versus 0.7, respectively) when accounting for the variability of M/L. The observed GCLF is found to be consistent with a Schechter-type initial cluster mass function and a mass-dependent mass-loss rate.Comment: 4 pages, 2 figures. To appear in the proceedings of "Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies" (Tennessee, July 2009

    Selection of the SIM Astrometric Grid

    Get PDF
    We investigate the choice of stellar population for use as the Astrometric Grid for the Space Interferometry Mission (SIM). SIM depends on the astrometric stability of about 2000 stars, the so called Grid, against which the science measures are referenced. Low metallicity, and thus relatively high luminosity K giants are shown to be the population of choice, when available. The alternative, nearby G dwarfs, are shown to be suseptable to unmodeled motions induced by gas-giant planetary companions, should there be a significant population of such companions. Radial velocity filtering is quite efficient in selecting Grid members from the K giants with yields exceeding 50% if filtering at 30m/s (1-sigma) is available. However if the binary fraction of the G dwarfs approaches 100% as some studies suggest, the yield of stable systems would be in the range of 15% at best (with 10m/s filtering). Use of the initial SIM measurement as a final filter is shown not to be critical in either case, although it could improve the yield of stable grid members. For a Grid composed of weak-lined K giants, the residual contamination by large unmodeled motions will amount to about 3% (and rises to about 6% if a 60m/s radial velocity criterion is used). The selective introduction of quadratic terms in the proper motion solutions during the post-mission phase of data reduction can reduce contamination to a remarkable 1% or better in either case. Analytic estimates based on circular orbits are developed which show how these results come about.Comment: 42 pages including 13 eps figures. To be published Sept 2002 in PAS

    Black hole mergers in the universe

    Get PDF
    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black-hole binaries become more tightly bound by superelastic encounters with other cluster members, and are ultimately ejected from the cluster. The majority of escaping black-hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black-hole merger rate of about 1.6×1071.6 \times 10^{-7} per year per cubic megaparsec, implying gravity wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first two years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.Comment: 12 pages, ApJL in pres
    corecore