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Abstract

We study optimal risk adjustment in imperfectly competitive health insurance markets

when high-risk consumers are less likely to switch insurer than low-risk consumers. First,

we find that insurers still have an incentive to select even if risk adjustment perfectly

corrects for cost differences among consumers. Consequently, the outcome is not efficient

even if cost differences are fully compensated. To achieve first best, risk adjustment should

overcompensate for serving high-risk agents to take into account the difference in mark-

ups among the two types. Second, the difference in switching behavior creates a trade

off between efficiency and consumer welfare. Reducing the difference in risk adjustment

subsidies to high and low types increases consumer welfare by leveraging competition from

the elastic low-risk market to the less elastic high-risk market. Finally, mandatory pooling

can increase consumer surplus even further, at the cost of efficiency.
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1. Introduction

Health insurance markets suffer from adverse selection. Buyers of health insurance know more

about their expected health care costs than the firms selling insurance. And even if some of

their health characteristics are observable, insurers are often prohibited from exploiting this

information and practising third-degree price discrimination, by so-called community rating

requirements. Insurance companies can however engage in second-degree price discrimination,

offering different contracts to high cost and low cost consumers, in order to separate the different

types. This separation of consumer types leads to inefficiency in health insurance markets (see

Rothschild and Stiglitz (1976)).

An important goal of risk adjustment is to reduce health insurers’ incentive to select, thus

enhancing efficiency.1 Countries that use risk adjustment include Belgium, Colombia, Germany,

Israel, the Netherlands, Switzerland and the United States. Van de Ven and Ellis (2000), Ellis

(2007) and Armstrong et al. (2010) discuss the different ways risk adjustment is used in these

countries. These schemes involve significant amounts of money. To illustrate, the Netherlands

currently have an elaborate nationwide risk adjustment system with a 2011 budget equal to

18 billion Euro, which amounts to 3% of GDP. This paper analyzes how the money involved

should be allocated to maximize the sponsor’s objective function.

Traditionally, risk adjustment focuses on the supply side of health insurance. This literature

tries to predict the health care costs of an individual in a future period of, for example, one year,

based on the observed characteristics of this individual. Variables used include age, gender,

previous diagnoses and drug prescriptions. See Van de Ven and Ellis (2000) for an overview of

variables used in risk adjustment. Making the transfers to insurance companies a function of

these predicted costs tends to increase efficiency in the insurance market.2 Glazer and McGuire

(2000), Glazer and McGuire (2002) and Jack (2006) present results along these lines. These and

other papers in the risk adjustment literature have two implications. First, once the prediction

of health care costs for an individual are perfect and the risk adjustment system fully corrects

for any cost differences (we call this perfect risk adjustment), the insurance companies have no

incentive any more to engage in cream skimming, i.e., to select certain risks. Therefore, once

the cost predictions are good enough, according to this literature the outcome in the health

1See Cutler and Reber (1998) for an estimate of the inefficiency in case there is no risk adjustment.
2Depending on the way that risk adjustment is organized, these transfers to insurers are paid by the govern-

ment or another sponsor of the scheme, like an employer.
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insurance market will be efficient. Second, risk adjustment enhances both efficiency and equity.

The reason is the following. People with high expected health care costs tend have a low health

status. As risk adjustment pays a higher contribution for such unfortunate high risk people, it

is viewed as contributing to fairness.

We claim that both implications are unlikely to hold in reality. Consequently, risk ad-

justment resources are likely to be wasted if the program is designed on the basis of these

premises. The reason is the importance of the demand side in determining health insurance

market outcomes. It is well known that people do not only differ in their expected health

care costs but also in their tendency to switch insurers. Beaulieu (2002), Buchmueller (2006),

Nuscheler and Knaus (2005), Royalty and Solomon (1999), Schut, Stefan and Wasem (2004),

Strombom, Buchmueller and Feldstein (2002) and Van Vliet (2006) document that old or sick

insured are less likely to switch insurer. For example, in a US study, Strombom, Buchmueller

and Feldstein (2002) find that young and healthy employees are four times more price-elastic

than the oldest employees. Schut, Stefan and Wasem (2004) find a similar ratio of elasticities in

a comparison between German non-pensioners and pensioners. As both elderly and sick have

relatively higher expected costs than the average person in the population, people with high

expected costs are less likely to switch insurer.3 Importantly, the variables used in these studies

on consumer type and switching behavior are similar to the ones used in risk adjustment. This

connection is overlooked in the traditional literature on risk adjustment.

The main contribution of our paper is to model explicitly this relation between expected

costs and tendency to switch insurer. This leads to the following implications for optimal

risk adjustment. First, even if risk adjustment perfectly corrects for expected costs, insurers

still have an incentive to select. The reason is that risk adjustment also needs to compensate

insurers for the foregone mark-ups on the high types. To get an efficient outcome in the

insurance market, risk adjustment needs to overcompensate the high risk types. That is, the

difference in risk adjustment transfers between the high and low type should be bigger than

their difference in expected costs (proposition 1 below), and include the difference in mark-

3This is related to adverse retention as discussed by Cutler, Lincoln and Zeckhauser (2009). Possible expla-
nations for this relation between expected costs and switching behavior include the following. People currently
undergoing treatment tend to be reluctant to switch half-way through. People with a history of sickness and
elderly people have a relation with their current physicians. Moreover, they chose these physicians themselves in
the past. Hence switching to another insurer with another provider network entails high costs for them. These
costs can be both psychological but also entail the transaction costs of transferring medical records. Finally,
there may be a status quo bias that is stronger for people that have actively interacted with their insurer in the
past, for example by filing health care expenditures with their insurer or asking advice about which provider to
go to.

3



ups (
price

elasticity
) between the two types. Assuming elasticities differing by a factor of four

(see Strombom, Buchmueller and Feldstein (2002) and Schut, Stefan and Wasem (2004)), this

implies that this correction to traditional risk adjustment is of the same order of magnitude as

the mark-up itself. The effect is therefore significant in less than fully competitive insurance

markets.

Second, the difference in switching behavior creates a trade off between efficiency and con-

sumer welfare. In particular, starting at first best, introducing inefficiency by biasing the

transfers against the high type unambiguously increases average consumer welfare. This is

driven by competition leverage. Increasing the transfer of the low risk type relative to the high

type induces insurers to compete more vigorously for low types. This has three implications.

First, this selection behavior through second-degree price discrimination creates inefficiency.

Second, competing more vigorously for low types reduces their insurance premium. Third, via

the incentive compatibility (IC) constraint, high-risk types benefit from intensified competition

in the low risk market as well. Starting from first best, the latter two effects dominate the

former and consumer welfare increases. By biasing the risk adjustment transfers against the

high types, competition is leveraged from the low risk market where consumers are likely to

switch insurers, to the high risk market where the tendency to switch insurers is lower. To

illustrate the power of competition leverage, we derive conditions under which maximizing the

utility of the high type implies that the risk adjustment scheme taxes the high risk type and

subsidizes the low type (proposition 2). Although this seems an extreme outcome, it does point

to the possibility that high risk consumers may be better off without than with “conventional”

risk adjustment as the latter may go in the wrong direction.

As a third implication, if people do not differ in their tendency to switch insurer and only

differ in costs, optimal risk adjustment implies that each risk type gets efficient insurance. In

the Rothschild-Stiglitz model this implies a pooling contract. Hence there is no benefit to

enforce mandatory pooling in the health insurance market. Indeed, if people differ on other

dimensions, such as taste for risk, enforcing pooling would be inefficient. However, in our

model with different switching behavior mandatory pooling also has a benefit. In particular,

mandatory pooling tightens the IC-constraint relating high to low type utility. As a result, a

given level of competition leverage comes at lower distortion costs. Hence consumer welfare

is higher under mandatory pooling than if firms are allowed to engage in second-degree price

discrimination (proposition 4). In practice, this welfare gain needs to be weighed against

reduced variety in contracts, which may reduce welfare if consumers have different tastes for
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risks.

Our paper is related to the health economics literature on health insurance and risk adjust-

ment and the industrial organization (IO) literature on oligopoly with price discrimination. We

discuss each in turn. The risk adjustment literature has two strands. The empirical literature,

as mentioned above, tries to find the best prediction of an individual’s next period health care

costs. It focuses on variables that are easily available, such as age, gender, or zip code, so as

to ensure that the estimated model can be used in practice. Theoretical papers, like Glazer

and McGuire (2000), Glazer and McGuire (2002) and Jack (2006) analyze how imperfect sig-

nals about consumer types should be mapped into risk adjustment transfers. In these papers,

absence of noise implies that perfect risk adjustment leads to efficient market outcomes. Our

paper differs from these papers by explicitly modeling the relation between risk type and elas-

ticity to switch insurers. As a consequence, even with perfectly informative signals, perfect risk

adjustment is inefficient.

In the industrial economics literature there are a number of papers on price discrimination

in an oligopoly setting. Examples include Stole (1995), Armstrong and Vickers (2001) and

Schmidt-Mohr and Villas-Boas (1999) (see Stole (2007) for an overview). These papers focus

on the characterization of the equilibrium. A policy question is whether allowing price discrim-

ination raises total welfare. Below we show that, in health insurance markets, banning price

discrimination by mandating a pooling contract can increase consumer welfare. Further, in a

risk adjustment context a much richer set of policy instruments exists besides allowing or ban-

ning price discrimination. Policy makers can adjust the tax or subsidy per consumer type. We

characterize the effects of such taxes and subsidies on efficiency (total welfare) and consumer

welfare. Finally, leverage in the I.O. literature refers to firms leveraging market power from one

market to the next. Instruments to do this include exclusionary contracts, vertical integration

and bundling of products, see Rey and Tirole (2007) for an overview. In this paper, in contrast,

we identify a way for the social planner to leverage competition from one market segment to

the next.

Our analysis has two main policy implications. First, risk adjustment should not focus

on the costs, i.e., the supply side, only. Efficiency cannot be fully restored in this way. Risk

adjustment should take on board the literature that shows the relation between consumer

type and tendency to switch insurer. We show how predicted costs and switching elasticities

should be combined to find the risk adjustment transfers that maximize the planner’s objective.

Second, policy makers should be clear on their goals. As we demonstrate, if everyone has the
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same tendency to switch insurers, efficiency, consumer welfare and the utility of the high risk

type are all maximized by implementing the first best. Hence, the exact goal of the risk

adjustment scheme is immaterial. However, in the empirically relevant situation the switching

elasticity is negatively correlated with expected health care costs. The goal then does matter

for the exact risk adjustment transfers. Therefore, it is important that the sponsor of the

insurance plan, whether it is a government or an employer, is clear about its objective for risk

adjustment.

The set up of our paper is as follows. We first introduce the model in section 2 and

discuss conditions for the existence of symmetric equilibria. Section 3 derives optimal risk

adjustment in case the planner’s objective is total welfare. We then derive in section 4 how

risk adjustment changes if, instead, the planner wants to maximize consumer welfare. Section

5 shows that mandatory pooling leads to higher consumer welfare than allowing the firms to

price discriminate. As was stressed by Glazer and McGuire (2000), it is important to take

into account that the planner only has imperfect information about consumer types. Section 6

shows that our results are robust to such noisy signals. We conclude with a discussion of policy

implications.

2. The model

We introduce a model in which consumers have different expected medical costs and het-

erogeneous preferences over insurers. The former captures the adverse selection problem in

insurance markets. The latter implies that insurers have market power. Recent evidence that

market power is important in health insurance markets includes Dafny (2010). As discussed

in the introduction, we explicitly take into account that people with high expected health care

costs are less likely to switch insurer.

We follow the set up in Rothschild and Stiglitz (1976) and Newhouse (1996) to elegantly

capture adverse selection and the inefficiency that comes with it. Suppose that there are two

types of consumers, h and l, where the fraction of h types is denoted by λ ∈ 〈0, 1〉. A consumer

of type i = l, h has expected medical costs θi, with θh > θl. An insurance contract consists of

a price pi and a coverage qi, implying that an agent has to pay fraction 1− qi of medical costs

herself.

More generally, q can be interpreted as the generosity of the insurance contract. This can
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take the form of copayments and deductibles but also whether the insured is free to choose

the provider she wishes. That is, whether the insurance is fee-for-service, a provider from the

network has to be chosen (as is common in managed care in the form of Health Maintenance

Organizations), or something in between (such as in Preferred Provider Organizations). In each

of these cases, higher reimbursement and more freedom is preferable for each consumer, but

more so for the high risk type who is more likely to need treatment. Glazer and McGuire (2000),

Jack (2001) and Olivella and Vera-Hernández (2007) chose a slightly different set up where

the insurer offers contracts with a different mix of treatments for acute and chronic illnesses,

respectively. Types differ in their preferences over the mix of treatments. Mathematically, both

models are similar, although the interpretation differs slightly. Like in our model, in the Glazer

and McGuire (2000) set up the efficient contract is a pooling contract.

To obtain a tractable parametrization, we use mean-variance preferences. The utility for a

consumer of type i who buys an insurance contract with price pi and coverage qi is as follows

ui = w − (1− qi)θi − pi − 1
2
rσ2(1− qi)2 (1)

Here, w denotes the initial wealth of the agent, the variance of a consumer’s expected medical

costs equals σ2, and r > 0 measures the agent’s degree of risk aversion. We only consider

insurance contracts with q ∈ [0, 1]. Contracts with q > 1 are ruled out as these would invite

serious moral hazard problems: a consumer could then earn money by undergoing treatment.

Similarly, q < 0 is ruled out because consumers would not report any treatment on which they

spent money.

We have two symmetric insurers Ia and Ib who face demand on segment i ∈ {h, l} given

by Di(ui
a, u

i
b) ≥ 0 and Di(ui

b, u
i
a) ≥ 0, respectively. As demand is written in utility terms we

have Di
1 > 0, Di

2 < 0, where Di
1 denotes the derivative of Ij’s demand (j = a, b) with respect

to its own utility offer ui
j on market segment i = l, h. Similarly, Di

2 denotes the derivative with

respect to its opponent offer ui
−j.

Because of moral hazard issues (see e.g. Pauly (1974)), an agent can buy at most one

insurance contract. The individual rationality constraint can be written as

w − p− θi(1− q)− 1
2
rσ2(1− q)2 ≥ w − θi − 1

2
rσ2 (2)

We will assume that this constraint never binds in equilibrium. That is, we focus on the
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case where the relevant outside option for an agent is switching to the competing insurance

company. This is called “full scale competition” (Schmidt-Mohr and Villas-Boas (1999)) or

“pure competition” (Stole (1995)). As illustrated below, in a Hotelling model this is equivalent

to assuming that the whole market is served. Another reason that can justify why we neglect

the individual rationality constraint is that in many countries, health insurance is mandatory.

The main reason for assuming pure competition is that it simplifies the budget constraint for

risk adjustment, see equation (7) below.

These specifications imply that Di(ui
a, u

i
b) +Di(ui

b, u
i
a) = λi where λh = λ and λl = 1 − λ.

Further, Di(u, u) = 1
2
λi: if both insurers offer the same utility on segment i ∈ {l, h}, consumers

split equally between them. With perfect competition on segment i we have Di
1(u

i, uu)|ui=uu =

+∞, Di
2(u

i, uu)|ui=uu = −∞. In words, starting in a symmetric outcome (ui
a = ui

b = ui), a

small increase in ui
a (ui

b) makes sure that Ia gains (loses) the whole market. With less than

perfect competition, say because consumers view insurers as selling differentiated products, the

derivatives Di
1, D

i
2 are finite. In this case, insurers have market power.

In addition, we assume that in a symmetric equilibrium the h market is less elastic than

the l market:
Dh

1 (u
h, uh)

1
2
λ

=
Dh

1 (u
h, uh)

Dh(uh, uh)
<

Dl
1(u

l, ul)

Dl(ul, ul)
=

Dl
1(u

l, ul)
1
2
(1− λ)

(3)

for each uh, ul. This captures the observation that h-type consumers are less likely to switch

insurer than l-types. As mentioned in the introduction, reasons why h-consumers are less likely

to switch insurers include: they may be in the middle of treatment and do not want to switch

insurer (e.g. due to provider network considerations), status quo bias may be stronger if a

consumer interacted with the insurer before and low health consumers are more likely to have

had such interactions in the past. Finally, Di
1(u

i, ui) is independent of ui (i ∈ {h, l}). Let us

briefly discuss an example of the demand structure above.

Example 1 Consider the case where insurer Ia (Ib) is on the far left (right) of the Hotelling

beach of length 1. The travel cost t is the same for both consumer types. Consumers are dis-

tributed over the beach with different distributions for different types. The symmetric density

function on [0, 1] is given by f(x) for a h-type and by g(x) for an l-type, with respective cu-

mulative distribution functions F (x) and G(x). We model the idea that the high types are less

elastic in switching insurer by assuming that F has relatively more mass at the extremes and

less in the middle. For G it is the other way around. Roughly speaking, θl types are willing to

buy from any insurer while the high types are “biased” towards the insurer close to them.
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It is routine to verify that for a certain market segment when firm Ia offers utility ua and

Ib offers ub the indifferent consumer is located at

x = 1
2
+

ua − ub

2t
(4)

Therefore, firm Ia’s market share in the θh market is given by Dh(uh
a, u

h
b ) = λF (1

2
+

uh
a−uh

b

2t
). If

both insurers offer the same utility, the market is split fifty-fifty. If Ia offers higher utility, it

gains market share from Ib and the lower t the faster this goes. Hence, lower t is interpreted

as more intense competition and perfect competition corresponds to t = 0. Equation (3) can be

written as
f(1

2
)

F (1
2
)
<

g(1
2
)

G(1
2
)

which is implied by the assumptions on the density functions f and g described above. Finally,

in a symmetric equilibrium we have Dh
1 (u, u) = λf(1

2
) independent from the level of u and

similarly for the l-type.

An insurer offering two contracts (one intended for θl and one for θh)4 needs to take into

account the incentive compatibility constraints for the high and the low type:

ICh : uh ≥ ul −∆θ(1− ql) (5)

ICl : u
l ≥ uh +∆θ(1− qh) (6)

where ∆θ = θh − θl > 0. It follows from adding the two incentive compatibility constraints

that qh ≥ ql. The constraint for the low type then implies that ph ≥ pl.

Equation (5) shows the idea of competition leverage. If by stimulating competition on the

l-market, the planner can raise ul (by reducing pl) the h-type benefits from this as well. Insurers

will reduce ql in response to limit the increase in uh. Competition leverage benefits h-types if

the former effect outweighs the latter.

4Note that we consider second degree price discrimination, and assume third degree price discrimination to
be prohibited. In the terminology of the health economics literature, we have community rating. If, say, the
h-type would buy the contract intended for the l-type, he would buy the contract at the same price as the
l-type. In section 5 we consider the case where second degree price discrimination is banned.
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2.1. Risk adjustment

We assume that the government wants to use risk adjustment to improve the outcome in the

insurance market. In particular, an insurer receives ρh (ρl) for each h (l) customer that it has.

Here we assume that the government can perfectly observe each customer’s type.5 In section 6

we show that our results generalize to the case with imperfect observation of types.

To simplify notation, we assume that the overall budget for risk adjustment equals zero.6

That is, the budget equation can be written as

λρh + (1− λ)ρl = 0 (7)

Using equation (1), we can write the profit margin πi (price minus expected cost plus the risk

adjustment contribution) for type i = l, h as

πi(ui, qi) = pi − qiθi + ρi = w − ui − θi + ρi − 1
2
rσ2(1− qi)2 (8)

Thus, risk adjustment affects market outcomes by changing the margin that health care insurers

make on different types of consumers.

2.2. An insurer’s optimization problem

As oligopoly models with price discrimination are not straightforward (see Stole (2007) for an

overview), we need to be careful in characterizing equilibrium outcomes. This section derives

sufficient conditions for the insurers’ optimization problem to be well behaved.

When insurer Ib chooses u
h
b , u

l
b, we write insurer Ia’s optimization problem as

max
uh
a ,u

l
a,q

h
a ,q

l
a

Π(uh
a, u

l
a, q

h
a , q

l
a; u

h
b , u

l
b) (Puh

b
,ul

b

)

subject to qha , q
l
a ∈ [0, 1] and the IC constraints for the high-type and the low type (5) and (6),

5This assumption is usually justified by assuming that the government has (ex post) more information than
the insurer ex ante. Hence the insurer is not able to (explicitly) select risks ex ante but the government can
perfectly risk adjust ex post. Alternatively, the insurer has the relevant information but is prevented by law to
act upon this information. To illustrate, in the Netherlands an insurer cannot refuse a customer who wants to
buy a certain insurance contract.

6In particular, below we use dρh = −(1 − λ)/λdρl. In words, we consider changes in risk adjustment for a
given risk adjustment budget. As we do not analyze changes in the budget, we can normalize the budget to
zero without loss of generality.
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and where profits are given by

Π(uh
a, u

l
a, q

h
a , q

l
a; u

h
b , u

l
b) = Dh(uh

a, u
h
b )π

h(uh
a, q

h
a) +Dl(ul

a, u
l
b)π

l(ul
a, q

l
a) (9)

Note that Ib’s choice of qhb , q
l
b does not affect Ia’s profits (for given uh

b , u
l
b). Below, we focus on

symmetric Nash equilibria of this optimization problem, defined as follows.

Definition 1 The vector (uh∗, ul∗, qh∗, ql∗) forms a symmetric Nash equilibrium if (uh∗, ul∗, qh∗, ql∗)

solves (Puh∗,ul∗); that is, Ib chooses u
h
b = uh∗ and ul

b = ul∗.

Directly analyzing this problem is not straightforward for two reasons. First, given Ib’s

strategy (uh
b , u

l
b), Ia optimizes over four variables (uh

a, u
l
a, q

h
a , q

l
a). Second, it is routine to verify

that insurer’s optimization problem (Puh

b
,ul

b

) is not concave in its four variables.7 The problem

is, however, considerably simplified if we assume that the incentive compatibility constraint for

the high type is binding and that the incentive compatibility constraint for the low type is non

binding. In that case, we can focus on the following problem.

max
uh
a ,u

l
a

Π(uh
a, u

l
a, 1, 1−

ul
a − uh

a

∆θ
; uh

b , u
l
b) (P̂uh

b
,ul

b

)

This is an optimization problem with only two variables (for given uh
b , u

l
b). Further, as we

illustrate below, it is straightforward to derive sufficient conditions such that a stationary point

of (P̂uh

b
,ul

b

) gives the solution to this problem. We first derive such a stationary point and then

give conditions under which this point forms the solution to the original problem (Puh

b
,ul

b

).

In our analysis below, we focus on the solution (uh∗, ul∗) characterized by the following

7This can be seen as follows. Π11 = Dh
11π

h − 2D11, Π33 = −Dhrσ2 and Π13 = Dh
1 rσ

2(1 − qh). Hence the
requirement on the Hessian that Π11Π33−(Π13)

2 > 0 cannot be satisfied for values uh so low that Dh ≈ 0. Note
that –strictly speaking– the Hessian does not need to be negative semi-definite. Because profits are maximized
under constraints, the relevant requirements are on the bordered Hessian.
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equations:

Dh
1 (u

h∗, uh∗)πh(uh∗, 1)−Dh(uh∗, uh∗) +Dl(ul∗, ul∗)rσ2u
l∗ − uh∗

(∆θ)2
=0 (10)

Dl
1(u

l∗, ul∗)π(ul∗, ql∗)−Dl(ul∗, ul∗)−Dl(ul∗, ul∗)rσ2u
l∗ − uh∗

(∆θ)2
=0 (11)

qh∗ =1 (12)

ql∗ = 1−
ul∗ − uh∗

∆θ
∈ [0, 1] (13)

These equations give us the stationary point of (P̂uh

b
,ul

b

) for the case where uh
b = uh∗, ul

b = ul∗.

As discussed above, we are not interested in parameter values which lead to ql∗ /∈ [0, 1].

Sufficient conditions for problem (P̂uh

b
,ul

b

) to be concave are straightforward to derive.8 We

get the following for the elements of the Hessian:

∂2Πa

∂(uh
a)

2
= Dh

11(u
h
a, u

h∗)πh(uh
a, 1)− 2Dh

1 (u
h
a, u

h∗)−Dl(ul
a, u

l∗)
rσ2

(∆θ)2
(14)

∂2Πa

∂(ul
a)

2
= Dl

11(u
l
a, u

l∗)πl(ul
a, 1−

ul
a − uh

a

∆θ
)− 2Dl

1(u
l
a, u

l∗)(1 + rσ2u
l
a − uh

a

(∆θ)2
)−Dl(ul

a, u
l∗)

rσ2

(∆θ)2

(15)

∂2Πa

∂ul
a∂u

h
a

= Dl
1(u

l
a, u

l∗)rσ2u
l
a − uh

a

∆θ
+Dl(ul

a, u
l∗)

rσ2

(∆θ)2
(16)

To illustrate, we show that if demand is linear (Di
11 = 0) sufficient conditions for concavity

imply a restriction on the relative slopes Dh
1/D

l
1. With linear demand, it is immediate that

∂2Πa

∂(uh
a)

2 ,
∂2Πa

∂(ul
a)

2 < 0. The determinant of the Hessian can be written as

∂2Πa

∂(uh
a)

2

∂2Πa

∂(ul
a)

2
−

(

∂2Πa

∂ul
a∂u

h
a

)2

= 4Dh
1D

l
1 + 2Dh

1D
l rσ2

(∆θ)2
+ 2DlDl

1

rσ2

(∆θ)2

+Dl
1rσ

2u
l
a − uh

a

(∆θ)2

(

4Dh
1 −Dl

1rσ
2u

l
a − uh

a

(∆θ)2

)
(17)

For profits to be concave in uh
a, u

l
a, the determinant of the Hessian must be positive for all

values uh
a, u

l
a that satisfy the incentive compatibility constraints. A sufficient condition for this

8In fact, quasi-concavity of Π is already sufficient for a stationary point being the global maximum of Π.
Olivella and Vera-Hernández (2007) give an example of a Hotelling model where the symmetric equilibrium is
characterized by equations (10)–(13).
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is Dh
1/D

l
1 > rσ2/4.

Below we focus on equations (10)–(13) as solution to problem (P̂uh

b
,ul

b

). The following lemma

gives sufficient conditions under which such a solution is a symmetric Nash equilibrium. In order

to state and discuss the intuition of the lemma, we define ũi as follows:

ũi = argmax
u

Di(u, ui∗)πi(u, 1)

In words, ũi maximizes profits when the insurer focuses on the i market (where its opponent

offers ui∗ as determined by equations (10) and (11)) and ignores the other market.

Lemma 1 Assume that equations (10)–(13) solve problem (P̂uh∗,ul∗) and that

Dh(ũl, uh∗)(w − θh + ρh − ũl) ≥ 0.

Then (uh∗, ul∗, 1, ql∗) solves (Puh∗,ul∗) and hence is a symmetric Nash equilibrium.

The assumption makes sure that focusing on the l-market leads to non-negative profits

on the h market. As shown in the proof, this excludes the possibility that a corner solution

dominates an interior stationary point in terms of profits.9

2.3. Total welfare

Throughout this paper, we will consider both total and consumer welfare. Papers that consider

an insurance market with zero profits, for example due to perfect competition, cannot make

this distinction. In that case, by necessity, consumer welfare equals total welfare. However, in

our case the insurers have market power and the difference between consumer and total welfare

is important. As shown below, optimal risk adjustment depends on whether the planner wants

to maximize total welfare (efficiency) or consumer surplus.

In symmetric equilibrium, total welfare is defined as

W = λ(w − θh − 1
2
rσ2(1− qh)2) + (1− λ)(w − θl − 1

2
rσ2(1− ql)2) (18)

The first term on the right hand side corresponds to total utility of the high type plus the profit

of the insurers on those types. The second term corresponds to total profit on, and utility of,

9See Olivella and Vera-Hernández (2007) for a numerical analysis of the case with corner solutions.
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the low type. Note that we focus on symmetric equilibria. Hence the (dis)utility a consumer

experiences when buying one brand rather than the other, the travel costs in our Hotelling

example, does not change in the comparative static exercises that we do below. Therefore we

ignore this term in the definition of welfare.

3. Total welfare

We first consider a market where the insurers can use second degree price discrimination by

offering two contracts: one contract for the h-type and one for the l-type. Section 5 considers

the case where each insurer is forced by the government to offer only one contract (mandatory

pooling).

We write problem (P̂uh

b
,ul

b

) here as follows:

max
uh
a ,u

l
a,q

h
a ,q

l
a

Dh(uh
a, u

h
b )(w − θh + ρh − 1

2
rσ2(1− qha)

2 − uh
a)

+Dl(ul
a, u

l
b)(w − θl + ρl − 1

2
rσ2(1− qla)

2 − ul
a)

+ µ(uh
a − ul

a +∆θ(1− qla))

(19)

with a similar expression for insurer Ib. µ denotes the shadow price of the incentive compatibility

constraint. Following lemma 1, we characterize the symmetric Nash equilibrium with the first

order conditions, which can be written as

qh = 1 (20)

−Dh(uh, uh) +Dh
1 (u

h, uh)(w − θh + ρh − uh) + µ = 0 (21)

−Dl(ul, ul) +Dl
1(u

l, ul)(w − θl + ρl − 1
2
rσ2(1− ql)2 − ul)− µ = 0 (22)

Dl(ul, ul)rσ2(1− ql) = µ∆θ (23)

We immediately get that the h-type receives full insurance. Coverage for the low type is given

by

1− ql =
µ∆θ

1
2
(1− λ)rσ2

(24)

where we use that Dl(u, u) = 1
2
(1 − λ). Hence, the lower µ (i.e., the less tightly the incentive

compatibility constraint binds), the higher the coverage for the low type.
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Using the first order conditions in equations (20)–(23), total welfare can be written as

W = w − λθh − (1− λ)θl −
(µ∆θ)2

1
2
(1− λ)rσ2

This expression shows that total welfare increases as µ decreases. This result obtains because

total welfare is only affected by efficiency. Prices are a pure transfer between consumers and

insurers. As µ decreases, ql increases and hence efficiency as well as total welfare rise.

As mentioned in the introduction, the existing risk adjustment literature focuses on equal-

izing costs. At first sight, this seems equivalent to equalizing price cost margins. As the h-type

is less elastic in switching insurer than the l-type, the mark up is higher for the h-type. Naively,

one might expect that the higher mark up reduces the compensation to be paid for higher cost

consumers to make insurers indifferent. Efficient risk adjustment would then undershoot the

cost difference: ρh−ρl < θh−θl. However, the next result shows that this intuition is incorrect.

Proposition 1 There exist ρh, ρl that implement first best as an equilibrium outcome where

both types buy the same contract with efficient insurance (ql,h = 1). It has ρh > ρl, that is,

risk adjustment in the standard direction, and ρh − ρl > θh − θl, that is, risk adjustment has to

overshoot the difference in expected costs between types.

The intuition behind this result is the following. It follows from the IC-constraints (5) and

(6) that we can only get efficiency (ql = 1) when the utilities uh, ul are equalized. Which risk

adjustment ρh − ρl causes insurers to offer both types the same utility? To achieve uh = ul

we need to compensate insurers both for the higher expected cost θh − θl and for the missed

higher mark up λ

Dh

1
(uh,uh)

− 1−λ

Dl

1
(ul,ul)

> 0 for the h-type.10 If insurers are forced to offer both

types the same utility, they face the opportunity cost of the higher mark up on the h-type. If

this opportunity cost is overlooked (such that ρh − ρl = θh − θl) insurers have an incentive to

separate the types by extracting rents from the inelastic h-type and competing more vigorously

for the elastic l-type, leading to ql < 1.

In other words, the current risk adjustment models with their exclusive focus on the

cost/supply side will not restore efficiency in health insurance markets. Even if one would

perfectly compensate for cost differences between types, ignoring their differing demand elas-

ticities leads to selection behavior by insurers and hence inefficient health insurance.

10Note that this expression equals the difference in price over elasticity for each type.
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If risk adjustment corrects for both the difference in costs and the difference in mark up,

and consequently overshoots the standard risk adjustment (ρh − ρl > θh − θl), we find µ = 0.

We call this first best or efficient risk adjustment. Efficient risk adjustment implies that the

insurer can optimize the contracts of each type separately without worrying about IC and the

resulting contracts will satisfy IC. Optimizing each contract separately induces the insurer to

give each type efficient insurance.

Note that in the equilibrium in proposition 1, insurance companies offer pooling contracts.

Hence making pooling mandatory will not affect the outcome in this case. However, as shown

in section 5, this does not imply that mandatory pooling is an irrelevant instrument for the

planner.

4. Consumer welfare

The analysis above on efficiency and first best is the standard analysis of risk adjustment

in papers like Glazer and McGuire (2002) and Jack (2006). However, as mentioned in the

introduction, it is not obvious that this is the appropriate analysis in a context with imperfect

competition. Competition authorities and regulators around the world explicitly claim that

their objective is consumer welfare, not total welfare. Further, in the health care sector, policy

motivations for interventions such as risk adjustment usually focus on consumers and solidarity

between different types of consumers, rather than on efficiency.11

In order to analyze the consequences for risk adjustment of such a consumer focus, we

introduce the following objective function for the social planner:

CSω = ωuh + (1− ω)ul (25)

with ω ∈ [λ, 1]. With ω = λ, the planner maximizes consumer surplus. With ω > λ the planner

gives relatively more weight to the (unfortunate) h-type than to the (lucky) l-type. This is a

simple way to formalize solidarity with the h-type.12

11Relatedly, in his overview paper Ellis (2007) mentions “the concept of ‘optimal risk adjustment’ in which
the sponsor’s goal is to maximize consumer welfare rather than to just break even.”

12The underlying assumption is that the h-type was born with, say a chronic disease like diabetes. Hence
θh’s high expected health care costs are exogenously given. Then fairness or solidarity considerations can lead
the planner to give a higher weight (ω > λ) to the h-type in the objective function. Alternatively, high health
care costs can be endogenous due to, for example, smoking behavior, food habits, drug use etc. See Van de Ven

16



Let us first consider consumer utilities as a function of the shadow price µ of the incentive

compatibility constraint. Using (21)–(23), we write

uh =
1

Dh
1

(µ− 1
2
λ) + w − θh + ρh (26)

ul = −
1

Dl
1

(µ+ 1
2
(1− λ)) + w − θl + ρl −

(µ∆θ)2

1
2
rσ2(1− λ)2

. (27)

where we use the shorthand notation Di
1 = Di

1(u, u) (i ∈ {l, h}) when this does not cause

confusion. The social planner can adjust ρh,l, subject to the budget constraint (7), to optimize

consumer welfare CSω. But note that a change in risk adjustment also affects the shadow

price of incentive compatibility, µ. In particular, an increase in ρl (at the cost of reducing ρh)

makes it more attractive for insurers to compete for the l-type. This increases ul and hence

tightens incentive compatibility for the high type. As a consequence, µ increases. We identify

competition leverage with this increase in µ as it shows the extent to which the planner uses IC

constraint (5) to increase uh. The increase in ρl and the increase in µ have opposite effects on

the utilities, as is clear from equations (26) and (27). Depending on the relative strength of the

direct effect (reduced ρh) and the indirect effect (increased µ), the high types might actually

win if subsidies towards them are reduced from their first-best values.

The idea of competition leverage is to use the binding IC constraint (5) to let the h-type

benefit from the more intense competition in the l-market. To find the effect of µ on uh we add

λ times equation (26) to (1−λ) times equation (27). This eliminates ρh,l and the result can be

written as:

uh = µ

(

λ

Dh
1

−
1− λ

Dl
1

)

−
µ2(∆θ)2

1
2
rσ2(1− λ)

− (1− λ)(ul − uh) + constant (28)

where the constant does not depend on µ and

ul − uh = ∆θ(1− ql) = µ
(∆θ)2

1
2
rσ2(1− λ)

using equations (5) and (24). Note that the constant in equation (28) equals uh in case µ = 0.

Equation (28) shows that an increase in µ affects uh through three channels that we label

margin effect (ME), distortion effect (DE) and inequality effect (IE). We discuss each of these

and Ellis (2000) for a discussion of the limits to solidarity due to such moral hazard effects.
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in detail.

We define the margin effect as

ME =

(

λ

Dh
1

−
1− λ

Dl
1

)

> 0 (29)

This effect is the driving force of competition leverage. As the l-market is more competitive

than the h-market, heating up competition between insurers in the l-market by increasing ρl

leads to higher ul. By the IC constraint this increases uh and µ as well. Clearly, if both markets

would be equally competitive, then ME = 0.

We define the distortion effect as

DE = 2
1

(1− λ)

µ(∆θ)2

1
2
rσ2

> 0 (30)

The total distortion in the market equals the fraction (1− λ) of the population affected times

their dis-utility from ql < 1:

(1− λ)1
2
rσ2

(

µ∆θ
1
2
rσ2(1− λ)

)2

(31)

The distortion effect equals the derivative of this expression with respect to µ. Note that

although qh = 1, equation (28) shows that the distortion does reduce uh. This effect is driven

by IC constraint (5) linking the utilities of the two types. Through this constraint the distortion

reduces uh as well. Clearly, with µ = 0 there is no distortion and by the envelope theorem a

small increase in µ has no first-order effect. However, this does not imply that the utilities of

the two types remain equal after an increase in µ. This brings us to the last effect.

Starting from µ = 0, an increase in µ creates or increases a wedge between uh and ul.

Once ql < 1, l-types can always mimic h-types and they are still better off as their expected

expenditure is lower. This is the adverse selection or inequality effect :

IE =
(∆θ)2

1
2
rσ2(1− λ)

> 0 (32)

This observation that l-types are always weakly better off than h-types no matter which con-

tracts are offered is the motivation for solidarity. The unfortunate h-type is worse off than the

l-type and it is not possible to make the h-type strictly better off than the l-type. Increasing

µ increases the wedge between the utilities: d(uh − ul)/dµ = IE > 0.
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We can do a similar analysis for the effect of µ on ul. The following proposition summarizes

these decompositions of the effect of competition leverage on utilities. Moreover, to illustrate

the strength of competition leverage, we derive a condition under which uh is maximized by

having ρh < 0.

Proposition 2 We can decompose the effect of µ on the agents’ utilities and CSω as follows

duh

dµ
= ME − (DE + (1− λ)IE) (33)

dul

dµ
= ME − (DE − λIE) (34)

dCSω

dµ
= ME − (DE + (ω − λ)IE) (35)

If ω = λ, optimization of CSλ leads to µ > 0 and ql < 1.

If ME > (1−λ)IE, then an increase in µ away from its first-best value (leveraging competition)

increases CSω for each ω ∈ [λ, 1]. In fact, both types win from such an increase in µ.

For IE close enough to zero, we find that uh is maximized by setting ρh < 0.

First of all, in the absence of a margin effect (ME = 0), as the existing risk adjustment

literature assumes, the proposition implies that efficient risk adjustment (µ = 0) maximizes

both uh and CSω for each ω ∈ [λ, 1]. In this sense, the existing literature is correct in focusing

on first best because efficiency and solidarity go hand in hand. However, as discussed in the

introduction it is well documented that h-types are less likely to switch insurer compared to

l-types. This difference in switching behavior implies that ME > 0 and therefore that efficiency

and consumer welfare start to diverge.

Starting from first best (where µ = 0 and hence DE = 0) an increase in µ increases

CSλ. Competition leverage raises consumer surplus while reducing efficiency. Hence, from

an (average) consumer perspective, efficiency (ql = 1) is, in fact, not optimal. If, moreover,

ME > (1− λ)IE, we see that duh/dµ|µ=0 > 0. Since the low type’s utility ul always increases

with µ at µ = 0, in that case dCSω

dµ
|µ=0 > 0 for each ω ∈ [λ, 1]. Roughly speaking, if the

margin effect exceeds the inequality effect, even the h-types benefit from competition leverage.

Increasing ρl (and hence reducing ρh) leads to higher uh and hence to higher CSω.

The intuition is that higher ρl intensifies competition on the l-market. In order to pocket

the higher ρl for more low-type consumers, insurers raise ul. Via intra-brand competition (IC)
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this forces them to raise uh as well. This effect is partly undone by increasing the distortion

(reducing ql) but under the assumption that IE is sufficiently small compared to the difference

in mark ups, the intra-brand effect outweighs the inequality effect, such that uh increases with

ρl.

For IE close enough to zero, the ρh maximizing uh is negative. The intuition for the

condition that IE should be small is the following. At first best, µ = 0, we have ρh > 0 (see

proposition 1) hence µ needs to fairly high for ρh to turn negative. When maximizing uh, µ

will be high if the costs of increasing µ are relatively small. As both DE and IE are driven by

the term (∆θ)2

1
2
rσ2(1−λ)

, the cost of increasing µ is small if IE is small. This leads to such a high µ

that ρh actually turns negative in maximizing uh.

Note that the last result implies that for IE close to zero, all consumers are better off without

risk adjustment than with efficient risk adjustment. Indeed, the efficient risk adjustment goes in

the wrong direction. Although this result may be extreme, it does point to the following more

general policy implication. Even though from an efficiency point of view, risk adjustment is

desirable, a planner that invokes consumer solidarity may want to abstain from risk adjustment

if consumers are sufficiently risk averse (high rσ2) or the difference between types (∆θ) is small.

We are not aware of empirical studies trying to quantify IE so that it can be compared to the

difference in elasticities found in papers like Royalty and Solomon (1999) and Schut, Stefan and

Wasem (2004). Nevertheless, ∆θ seems more likely to be small for an employer offering health

insurance to its employees than for a whole country combining risk adjustment with mandatory

insurance.

5. Mandatory pooling

As shown in proposition 1, efficient risk adjustment implies that insurers offer both types the

same contract. This might suggest that there is no role for mandatory pooling, as long as

risk adjustment is chosen optimally. In this section, we show that this intuition is incorrect.

Mandating pooling leads to higher CSω than allowing for second-degree price discrimination

(separating contracts). Moreover, the consumer welfare maximizing insurance contract features

inefficient insurance (q < 1).

In this section, we assume that each insurer is allowed to offer only a single contract with

some price p and a co-payment 1 − q. Hence, the insurer cannot price discriminate between
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types. The margin πi on type i = l, h therefore equals

πi = p− qθi + ρi.

Given a price and a co-payment, the utility of the h-type satisfies

p = w − uh − (1− q)θh − 1
2
rσ2(1− q)2 (36)

and equation (5) holding with equality determines the utility that the l-type receives given the

utility of the h-type. However, the latter is not an IC constraint here, as there is only one

contract, but an “accounting identity”, which relates the utilities of the h-type and the l-type

consumer. Put differently, this equation ensures that ph = pl = p when qh = ql = q.

Hence, insurer Ia’s optimization problem can be written as

max
uh
a ,u

l
a,q
Dh(uh

a, u
h
b )(w − θh + ρh − 1

2
rσ2(1− q)2 − uh

a)

+Dl(ul
a, u

l
b)(w − θl + ρl − 1

2
rσ2(1− q)2 − ul

a) + µ(uh
a − ul

a + (1− q)∆θ)

The optimization problem is similar to equation (19), with the additional requirement that

ql = qh. The first order conditions for q, uh and ul in symmetric equilibrium can be written

as13

1
2
rσ2(1− q) = µ∆θ (37)

−Dh(uh, uh) +Dh
1 (u

h, uh)(w − θh + ρh − 1
2
rσ2(1− q)2 − uh) + µ = 0 (38)

−Dl(ul, ul) +Dl
1(u

l, ul)(w − θl + ρl − 1
2
rσ2(1− q)2 − ul)− µ = 0 (39)

Writing again Di
1 = Di

1(u
i, ui), the types’ utilities in the pooling equilibrium are given by

uh =
1

Dh
1

(µ− 1
2
λ) + w − θh + ρh −

(µ∆θ)2

1
2
rσ2

(40)

ul = −
1

Dl
1

(µ+ 1
2
(1− λ)) + w − θl + ρl −

(µ∆θ)2

1
2
rσ2

. (41)

13Note that if equations (20)–(23) solve (Puh,ul), then (37)–(39) solve (Puh,ul) with the additional constraint
that qha = qla = qa. Intuitively, by limiting possible deviations for insurers (by requiring qh = ql) it becomes
easier to move from local conditions to a global optimum.
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Note the difference with equation (26), where the last term in the utility of the h-type consumers

is missing because they receive full insurance (qh = 1).

It is obvious that with mandatory pooling, the regulator could again choose risk adjustment

as given by (51) in the appendix, i.e., to optimize efficiency. Clearly, then µ = 0 and consumers

are fully insured, q = 1 (equation (37)). However, as shown below, if the objective is to

maximize weighted consumer surplus CSω, mandatory pooling leads to lower ρh, lower q and

higher µ than their respective first best values.

Adding λ times equation (40) to (1− λ) times (41) yields

uh = µ

(

λ

Dh
1

−
1− λ

Dl
1

)

−
µ2(∆θ)2

1
2
rσ2

− (1− λ)(ul − uh) + constant (42)

where the constant14 does not depend on µ and

ul − uh = ∆θ(1− q) = µ
(∆θ)2

1
2
rσ2

Although DE and IE could be defined differently in the pooling case, we choose to use the

definitions in equations (30) and (32) to facilitate the comparison of the two cases in proposition

4 below.

Proposition 3 We can decompose the effect of µ on the agents’ utilities and CSω as follows

duh

dµ
= ME − (1− λ)(DE + (1− λ)IE) (43)

dul

dµ
= ME − (1− λ)(DE − λIE) (44)

dCSω

dµ
= ME − (1− λ)(DE + (ω − λ)IE) (45)

If ω = λ, optimization of CSλ leads to less than perfect risk adjustment: q < 1.

If ME > (1−λ)2IE, optimization of consumer surplus CSω (for any ω ∈ [λ, 1]) with mandatory

pooling leads to less than perfect risk adjustment: q < 1.

Hence, we find again that efficient risk adjustment is not in the interest of consumers. At

µ = 0, CSλ is increasing in µ: competition leverage raises consumer surplus. In fact, comparing

14The constant equals uh in case µ = 0. Moreover, in case µ = 0 proposition 1 leads to the same outcome as
with mandatory pooling. Hence, the constant in equation (42) has the same value as the one in (28).
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the expressions for duh/dµ and dCSω/dµ in the proposition above with the expressions in

proposition 2 shows that the benefits of increasing µ (ME) are the same in both cases, but

the costs (DE and IE) are a factor 1 − λ < 1 smaller in the pooling case. This shows that

competition leverage is less costly in the pooling case and can be used to a bigger extent (higher

µ). Indeed, the following result shows that under mandatory pooling CSω cannot be lower than

when allowing for second degree price discrimination and is strictly higher if q < 1.

Proposition 4 If ω = λ then CSpool
λ > CSsep

λ .

If ME > (1 − λ)2IE, then mandatory pooling leads to higher CSω than second degree price

discrimination:

CSpool
ω > CSsep

ω

for each ω ∈ [λ, 1].

If ω = 1 then ME < (1 − λ)2IE < (1 − λ)IE implies that efficient insurance (µ = 0) is

optimal in both proposition 2 and proposition 3. Even if separation is allowed, the outcome is

pooling and hence utilities and welfare are the same in both cases.

However, if either ω = λ or ME > (1−λ)2IE then competition leverage is used to a bigger

extent under pooling because the costs of doing so are smaller than in the case where price

discrimination is allowed. Hence consumers are better off under mandatory pooling than under

separation.

The intuition for this is as follows. As the planner increases ρl, insurers compete more fiercely

for l-types thereby reducing pl and increasing ul. The IC constraint (5) then implies that either

uh increases as the planner intended, or coverage q falls because this is the insurers’ instrument

to keep uh low. When second degree price discrimination is allowed, reducing coverage ql is

relatively cheap for insurers. Indeed, ql only affects profits on the l-market. However, with

mandatory pooling, reducing q affects profits on the both the l- and h-market segment. This

makes it expensive for insurers to use q as a “defense mechanism” against competition leverage.

Hence firms reduce q less (compared to ql) in response to competition leverage µ. Since the

reduction in q is the planner’s cost of competition leverage, the cost terms (DE and IE) are

smaller in proposition 3 compared to proposition 2. Due to the lower cost, if competition

leverage is used under mandatory pooling, it leads to higher consumer welfare than second

degree price discrimination.

Finally, by solving dCSω/dµ = 0 for the optimal q in both the case where separation (qsep)
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is allowed and with mandatory pooling (qpool) leads to the following result.

Corollary 1 If ω = λ then (1− ql)sep = (1 − q)pool. If ω > λ and qpool < 1 then (1 − ql)sep <

(1− q)pool.

In words, in the case where ω = λ, we know from proposition 4 that mandatory pooling

leads to higher consumer surplus than allowing for second degree price discrimination because

more competition leverage (higher µ) is used under mandatory pooling. Since both µ and the

efficiency loss at given q grow with the same factor when switching from separation to pooling,

for utility function (1) CSλ is optimized at the same 1− q under both separation and pooling.

Under separation, this distortion only applies to the l-type while with mandatory pooling this

distortion applies to everyone. If ω > λ and some distortion is introduced under mandatory

pooling (to rule out the case where qpool = qsep = 1), then the distortion with mandatory pooling

is actually higher. In both cases, the (1 − q)pool distortion leads to lower costs of competition

leverage and hence CSpool
ω > CSsep

ω .

6. Imperfect observation of risk

Above, we assume that the planner can ex post perfectly observe each customer’s type. In

reality, the planner may only have a noisy signal of a customer’s θ. The question is: are the

results above robust to the imperfect observation of risk?

Following Glazer and McGuire (2000), let us assume that the planner cannot perfectly

observe the consumers’ types. Rather, the planner observes an imperfect signal (H,L) of

consumers’ types (h, l). With probability P h, the h-type will give a high signal H , and with

probability 1 − P h the high type’s signal will be L. Likewise, with probability P l the l-type’s

signal will be H (and with 1 − P l it will be L). Of course, for the signals to be informative at

all we require

0 ≤ P l ≤ 1
2
≤ P h ≤ 1.

Thus the h-type will more likely produce the H-signal, and the l-type will more likely produce

signal L.

The planner can now base the risk adjustment only on the observed signal (H,L). Con-

sumers, however, know their types and base their choices on their actual types (h, l). Call the
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risk adjustment based on the signal ρH,L. Then an insurer will get an effective subsidy on the

high types it attracts equal to

ρ̃h = P hρH + (1− P h)ρL,

and likewise the effective subsidy for the low types will equal

ρ̃l = P lρH + (1− P l)ρL.

Note that the ρ̃’s interpolate between the ρ’s.

To analyze the optimal ρH,L in this case, note that our analysis when signals are perfect

fully carries through with ρ replaced by ρ̃. Consequently, the optimal subsidies that we found

in that case are the optimal effective subsidies ρ̃. The subsidies the planner should give based

on the signals (H,L) should therefore be an exaggeration of the optimal subsidies, with positive

subsidies being increased and negative ones being decreased. This observation is independent

of whether the planner enforces mandatory pooling or not. Hence we get in both cases:

ρH =
1

P h − P l

(

(1− P l)ρ̃h − (1− P h)ρ̃l
)

, (46)

ρL =
1

P h − P l

(

−P lρ̃h + P hρ̃l
)

. (47)

To illustrate, when it is optimal to subsidize the low types (ρ̃l > 0) at the expense of the high

types (proposition 2), imperfect observation of types only makes this stronger in the sense that

ρH < ρ̃h < 0 < ρ̃l < ρL. We conclude that our results are, indeed, robust to the introduction

of noisy signals about consumers’ types.

7. Conclusion

In several countries, imperfect competition in markets for health care insurance goes hand in

hand with risk adjustment. The resources allocated to risk adjustment are significant; e.g.

approximately 3% of GDP in the Netherlands. Conventional risk adjustment focuses on the

supply side and tries to correct as well as possible for cost differences between high-cost and

low-cost consumers. Existing theoretical papers argue that this improves efficiency by reducing

25



insurers’ selection incentives, while at the same time guaranteeing access to health insurance

for high-risk consumers by lowering insurance premiums.

We study the consequences of the demand side for optimal risk adjustment. In particular,

we take into account that consumers’ price elasticities are negatively correlated with their

expected health care costs. We find that the difference in switching behavior creates a trade off

between efficiency and consumer welfare. From an efficiency point of view, to nullify selection

incentives, risk adjustment needs to overcompensate the high risk types (relative to their costs)

to get an efficient outcome in the insurance market. From the point of view of consumer welfare,

reducing the level of risk adjustment as compared to the first best increases consumer welfare

by leveraging competition from the elastic low-risk market to the less elastic high-risk market.

Mandatory pooling can increase consumer surplus even further, at the cost of efficiency.

What are the policy implications of our findings? First, an exclusive focus on increasing the

accuracy of cost forecasts in refining risk adjustment systems is misguided. Risk adjustment

resources will be partially wasted by this focus on the demand side. Risk adjustment systems

should take into account the impact they have on insurer competition, and the possibility of

leveraging competition that arises because of the relation between consumer type and tendency

to switch insurers. Our model shows how the literature studying this relation can be taken

on board. Accounting for the demand side of health insurance may be easier than it seems,

because the empirical literature studying consumers’ brand sensitivity uses many of the same

explanatory variables as the literature on risk adjustment. Our analysis also shows that nullify-

ing selection incentives using risk adjustment does not benefit consumers. Thus, risk selection

by insurers should not be viewed as bad per se, as seems the case in policy debates.

Second, policy makers should be clear on their goals. When setting risk adjustment levels,

policy makers should decide whether their goal is to optimize total welfare or consumer welfare.

Although conventional risk adjustment most likely promotes efficiency, it will reduce consumer

surplus under the – in our view – realistic assumptions that competition in health-insurance

markets is imperfect and healthy consumers are more price elastic than high-risk consumers.

If the aim of policy makers is to reduce high-risk consumers’ costs in a market with adverse

selection, risk adjustment should ’undershoot’ relative to the first best. In extreme cases, risk

adjustment may even run in the opposite direction. That is, high risk types are better off if

they are taxed to finance a subsidy for the low risk types.

On a more general level, our analysis points out the possibility of leveraging competition
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from one market to the other. In imperfectly competitive markets with second degree price

discrimination, we show that policy intervention in the form of taxes and subsidies may in-

crease competition by capitalising on incentive compatibility constraints. In markets for health

insurance, a framework for such a policy, i.e. the risk adjustment system, already exists and

can be used to this effect. One may wonder whether the idea could be used in other markets,

too. As an example, Dessein (2003) considers competition between telecom networks in mar-

kets with different types of consumers, those with high and low demand for calls. When price

elasticities differ among those types, Dessein finds that interconnection fees (the fees which

networks charge each other to put through calls to their consumers) may be used to influence

the level of competition in a way that is related to the mechanism we describe in this paper.

Regulators wanting to influence network competition can take this mechanism into account

when regulating interconnection fees.
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A. Appendix

Proof of lemma 1 In order to simplify notation, we write

Π∗(uh, ul, qh, ql) = Π(uh, ul, qh, ql; uh∗, ul∗) (48)

Π̂(uh, ul) = Π∗(uh, ul, 1, 1−
ul − uh

∆θ
) (49)

Suppose, by contradiction, that the claim is not correct. That is, there exist uh, ul, qh, ql such

that

Π∗(uh, ul, qh, ql) > Π̂(uh∗, ul∗) (50)

We consider three cases:

(I) Dh(uh, uh∗) > 0 and Dl(ul, ul∗) > 0:

• without loss of generality qh = 1

– Suppose not, that is qh < 1, then increasing qh increases profits (∂Π∗/∂qh > 0)

and relaxes (ICl)

• without loss of generality ql = 1− ul
−uh

∆θ
; suppose not:

– if ql > 1− ul
−uh

∆θ
, (ICh) is violated

– if ql < 1− ul
−uh

∆θ
, (ICl) is slack and increasing ql raises profits

but then inequality (50) contradicts that (uh∗, ul∗) solves P̂uh∗,ul∗.

(II) Dh(uh, uh∗) > 0 and Dl(ul, ul∗) = 0: we have the following inequalities:

Π̂(uh∗, ul∗) ≥ max
u

Π̂(u, ūl) ≥ Dh(uh, uh∗)π(uh, qh) = Π∗(uh, ul, qh, ql)

where ūi = max{u|Di(u, ui∗) ≤ 0}. This contradicts equation (50).

(III) Dh(uh, uh∗) = 0 and Dl(ul, ul∗) > 0: we have the following inequalities:

Π̂(uh∗, ul∗) ≥ Π̂(uh∗, ũl) ≥ Π∗(uh, ul, qh, ql)

where the second inequality follows from the assumption that Dh(ũl, uh∗)(w − θh + ρh −

ũl) ≥ 0. Again we find a contradiction of equation (50). Q.E.D.
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Proof of proposition 1 Assume that there is a choice of ρh,l that gives an efficient solution:

qh,l = 1. Note that from the first order condition (23) it follows that ql = 1 implies that µ = 0.

The incentive compatibility constraints for the high and the low type read

ICh : uh ≥ ul −∆θ(1− ql)

ICl : u
l ≥ uh +∆θ(1 − qh).

Therefore, efficiency implies uh = ul. Since also µ = 0 in an efficient equilibrium, we have from

the first order conditions

uh = w − θh + ρh − 1
2

λ

Dh
1

ul = w − θl + ρl − 1
2

(1− λ)

Dl
1

where we write Di
1 = Di

1(u
i, ui) to ease notation. So, uh = ul leads to

ρh − θh − 1
2

λ

Dh
1

= ρl − θl − 1
2

1− λ

Dl
1

. (51)

Conversely, setting the values for ρ such that this holds evidently solves the first order conditions

plus the IC-constraints. Note that there are multiple combinations of ρh and ρl that yield the

first-best outcome. The budget constraint λρh + (1− λ)ρl = 0 pins down a unique pair ρl, ρh.

As θh > θl and λ

Dh

1

> 1−λ

Dl

1

(by assumption (3)), the first-best implementing ρh and ρl satisfies

ρh > ρl and ρh − θh > ρl − θl. Q.E.D.

Proof of proposition 2 Both in this proof and the proof of proposition 3, we use a slightly

different way to compute the effect of µ on uh, ul and CSω than the one given in the main text.

The reason is that, for reference below, we need the relation between ρh,l and µ.

To obtain an expression relating µ and ρh,l, subtract the first-order conditions for the util-

ities, (22) and (21) and then use the one for the low type’s coverage ql (24) and the binding

incentive compatibility constraint. This results in

−
λ

Dh
1

+
1− λ

Dl
1

−∆θ −
ρl

λ
+

(∆θ)2µ

(1− λ)1
2
rσ2

(

1 +
µ

1− λ

)

+

(

1

Dh
1

+
1

Dl
1

)

µ = 0

where Di
1 = Di

1(u
i, ui). It is now convenient to look at the total derivative of the shadow

price µ, taking ρl as function of µ, and substituting ρh = −1−λ
λ
ρl. From the implicit function
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theorem, it now follows that

dρl

dµ
= λ

[(

1

Dh
1

+
1

Dl
1

)

+
(∆θ)2

1
2
rσ2(1− λ)

(

1 +
2µ

1− λ

)]

. (52)

This allows us to compute the total effect of changing µ on the individual types’ utilities:

duh

dµ
=

∂uh

∂µ
+

∂uh

∂ρl
∂ρl

∂µ

=
λ

Dh
1

−
1− λ

Dl
1

−
2µ(∆θ)2

1
2
rσ2(1− λ)

−
(∆θ)2

1
2
rσ2

, (53)

and
dul

dµ
=

λ

Dh
1

−
1− λ

Dl
1

−
2µ(∆θ)2

1
2
rσ2(1− λ)

+
λ

1− λ

(∆θ)2

1
2
rσ2

.

Consequently, at first best (µ = 0), low types always gain from increasing µ (i.e. the direct

transfers ρl outweigh the drag from the incentive compatibility constraint). More remarkably,

under the assumption that ME > (1− λ)IE, also high types gain from transferring premiums

to low types, starting from the first best.

More generally, adding the types’ utilities with weights ω and 1− ω, we find

dCSω

dµ
= −

ω − λ

1− λ

∆θ2

1
2
rσ2

+
λ

Dh
1

−
1− λ

Dl
1

−
2µ(∆θ)2

1
2
rσ2(1− λ)

. (54)

which is then also positive at µ = 0 under the assumption that ME > (1− λ)IE. We proceed

to find the optimum value µ∗(ω). Solving dCSω/dµ = 0 for µ gives us

µ∗(ω) = −1
2
(ω − λ) +

(1− λ)1
2
rσ2

2(∆θ)2

(

λ

Dh
1

−
1− λ

Dl
1

)

(55)

It follows that dµ∗/dω < 0. Hence, as long as ME > (1− λ)IE, we have that µ∗(ω) > 0 for all

ω.

By definition, uh is maximized for µ = µ∗(1). We proceed to show that ρh can be negative

for this value of µ. Since ρh = −1−λ
λ
ρl and in the first best

ρh − θh − 1
2

λ

Dh
1

= ρl − θl − 1
2

1− λ

Dl
1

,
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we get that in the first best (µ = 0)

ρl(0) = −λ

(

∆θ + 1
2

(

λ

Dh
1

−
1− λ

Dl
1

))

. (56)

This is negative, of course: risk adjustment in the “standard” direction. We now show that at

the point where uh is maximized (µ = µ∗(1)) ρl is a positive number (and then ρh is negative,

as a consequence). We write

ρl(µ∗(1)) = ρl(0) +

∫ µ∗(1)

0

dρl

dµ
dµ (57)

with ρl(0) given in equation (56) and from the derivative of ρl (equation (52)) we compute

∫ µ∗(1)

0

dρl

dµ
dµ = λ

[

µ∗(1)

(

1

Dh
1

+
1

Dl
1

)

+ µ∗(1)
(∆θ)2

1
2
rσ2(1− λ)

+
∆θ2µ∗(1)2

1
2
rσ2(1− λ)2

]

.

Finally, it is convenient to write equation (55) as

2
µ∗(1)(∆θ)2

1
2
(1− λ)rσ2

=

(

λ

Dh
1

−
1− λ

Dl
1

)

−
(∆θ)2

1
2
rσ2

, (58)

Combining this and using equation (58) in the second and third step we find:

ρl(µ∗(1))

λ
= −∆θ − 1

2

(

λ

Dh
1

−
1− λ

Dl
1

)

+ µ∗(1)

(

1

Dh
1

+
1

Dl
1

)

+ µ∗(1)
(∆θ)2

1
2
rσ2(1− λ)

+
(∆θ)2µ∗(1)2

1
2
rσ2(1− λ)2

= −∆θ −
(∆θ)2

rσ2
+ 1

2
µ∗(1)

(

2− λ

1− λ

1

Dh
1

+
1

Dl
1

)

−
µ̃(∆θ)2

(1− λ)rσ2

= −∆θ −
(∆θ)2

2rσ2
+ 1

2
µ∗(1)

(

2− λ

1− λ

1

Dh
1

+
1

Dl
1

)

− 1
4

(

λ

Dh
1

−
1− λ

Dl
1

)

(59)

It follows from equation (55) that µ∗(1) is increasing in rσ2 and that µ∗(1) → +∞ as rσ2 → +∞

and/or ∆θ → 0. Hence we find that ρl(µ∗(1)) > 0 for IE > 0 small enough. Q.E.D.

Proof of proposition 3 We start by finding the relation between risk adjustment ρh,l and

the shadow price µ. Solving for µ from (38),(39) leads to

µ

[(

1

Dh
1

+
1

Dl
1

)

+
(∆θ)2

1
2
rσ2

]

= 1
2

(

λ

Dh
1

−
1− λ

Dl
1

)

+∆θ −∆ρ. (60)
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Hence we find
∂ρl

∂µ
= λ(

1

Dh
1

+
1

Dl
1

+
(∆θ)2

1
2
rσ2

) (61)

We can now compute the total derivatives of the utilities uh,l with respect to µ,

duh

dµ
= −2µ

(∆θ)2

1
2
rσ2

+

(

λ

Dh
1

−
(1− λ)

Dl
1

)

− (1− λ)
(∆θ)2

1
2
rσ2

, (62)

dul

dµ
= −2µ

(∆θ)2

1
2
rσ2

+

(

λ

Dh
1

−
(1− λ)

Dl
1

)

+ λ
(∆θ)2

1
2
rσ2

(63)

and consumer surplus varies with µ according to

dCSω

dµ
= −2µ

(∆θ)2

1
2
rσ2

+

(

λ

Dh
1

−
(1− λ)

Dl
1

)

− (ω − λ)
(∆θ)2

1
2
rσ2

. (64)

Consumer surplus optimization then yields

µ∗(ω) =
1
4
rσ2

(∆θ)2

(

λ

Dh
1

−
1− λ

Dl
1

)

− 1
2
(ω − λ) (65)

Hence, for equally-weighted consumer surplus, ω = λ, equation (3) translates into positive

µ∗(λ). It is obvious that µ∗(ω) falls as ω increases. ME > (1−λ)2IE implies that µ∗ > 0 even

if ω = 1. That is, even when trying to maximize the utility of the θh-type, the planner still

distorts q < 1. Q.E.D.

Proof of proposition 4 At µ = 0, comparing equation (60) and (51) shows that under

both separation and pooling we have

∆ρ = ∆θ + 1
2

(

λ

Dh
1

−
1− λ

Dl
1

)

Hence ρh (and ρl) are the same for µ = 0 under separation and pooling. This implies that

CSpool
ω (0) = CSsep

ω (0). Subtracting equation (64) under pooling from the similar equation (54)

under separation yields

dCSpool
ω

dµ
−

dCSsep
ω

dµ
=

(∆θ)2

1
2
rσ2

λ

1− λ
(2µ+ ω − λ) > 0

for each ω ≥ λ, µ > 0. Since under pooling µ∗(ω) > 0 if either ω = λ or for each ω ∈ [λ, 1] if

ME > (1− λ)2IE, the result follows. Q.E.D.
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