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Abstract

We consider a GIIGIII queue with the shortest remaining processing time discipline (SRPT)

and light-tailed service times. Our interest is focused on the tail behavior of the sojourn-time

distribution. We obtain a general expression for its large-deviations decay rate. The value of

this decay rate crit~cally depends on· whether there is mass in the endpoint of the service-time

distribution or not. An auxiliary priority queue, for which we obtain some new results, plays an

important role in our analysis. We apply our SRPT-results to compare SRPT with FIFO from

a large-deviations point of view.

2000 Mathematics Subject Classification: 60K25 (primary), 60FIO, 90B22 (secondary).

Keywords f3 Phrases: busy period, large deviations, priority queue, shortest remaining process­

ing time, sojourn time.
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1 Introduction

In queueing theory the shortest remaining processing time (SRPT) discipline is famous, since it is

known to minimize the mean queue length and sojourn time over all work-conserving disciplines,

see for example Schrage [22] and Baccelli & Bremaud [3]. Recent developments in communication

networks have led to a renewed interest in queueing models with SRPT. For example, Harchol-Balter

et al. [13] propose the usage of SRPT in web servers. An important issue in such applications is the

performance of SRPT for customers with a given service time. Bansal & Harchol-Balter [4] give

some evidence against the opinion that SRPT does not work well for large jobs. They base their

arguments on mean-value analysis. Some interesting results on the mean sojourn time in heavy

traffic were recently obtained by Bansal [5] and Bansal & Gamarnik [6], who show that SRPT

significantly outperforms FIFO if the system is in heavy traffic.

In the present paper we approach SRPT from a large-deviations point of view. We investigate

the probability of a long sojourn time, assuming that service times are light-tailed. For heavy-tailed

(more precisely, regularly varying) service-time distributions, Nunez-Queija [18] has shown that the

tail of the sojourn-time distribution W{VSRPT > x} and the tail of the service-time distribution

W{B > x} coincide up to a constant. This appealing property is shared by several other preemptive

service disciplines, for example by Last-In-First-Out (LIFO), Foreground-Background (FB) and

Processor Sharing (PS); see [7] for a survey. Non-preemptive service disciplines, like FIFO, are

known to behave worse: the tail of the sojourn time behaves like xW{B > x}. This is the worst

possible case, since it coincides with the tail behavior of a residual busy period; for details see

again [7].

For light-tailed service times the situation is reversed. In a fundamental paper, Ramanan &

Stolyar [20] showed that FIFO maximizes the decay rate (see Section 2 for a precise definition)

of the sojourn-time distribution over all work-conserving service disciplines. Thus, from a large­

deviations point of view, FIFO is optimal for light-tailed service-time distributions. Since for any

work-conserving service discipline the sojourn time is bounded by a residual busy period, the decay

rate of the residual busy period is again the worst possible. Recently, it has been shown that this

worst-case decay-rate behavior of the sojourn time is exhibited under LIFO, FB [15], and, under

an additional assumption, PS [17].

The present paper shows that a similar result holds for both non-preemptive and preemptive

SRPT, under the assumption that the service-time distribution has no mass at its right endpoint.

Thus, for many light-tailed service-time distributions, as for example phase-type service times, large

sojourn times are much more likely under SRPT than under FIFO. The derivation of this result is

based upon a simple probabilistic argument; see Section 4.1.

The case where there is mass at the right endpoint of the service-time distribution may be

considered to be a curiosity; however, from a theoretical point of view, it actually turns out to
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be the most interesting case. The associated analysis, carried out in Section 4.2, is based on a

relation with a GIlGIll priority queue. Since we could not find large-deviations results in the

literature (an in-depth treatment of the MIG/1 priority queue is provided by Abate & Whitt [1]),

we analyze this GIIGIII priority queue in Section 3. Another noteworthy feature of this case is

that the resulting decay rate is strictly larger than the one under LIFO, but strictly smaller than

under FIFO (with the exception of deterministic service times, for which the FIFO decay rate is

attained). A similar result was recently shown in Egorova et al. [10] for the MIDl1 PS queue.

However, in general examples of service disciplines that exhibit this "in-between" behavior are rare;

see Section 5.1 of this paper for an overview.

Our results on SRPT suggest that, from a large-deviations point of view, it is not advisable

to switch from FIFO to SRPT. However, in Section 6 we show that this suggestion should be

handled with care. Specifically, we investigate the decay rate of the conditional sojourn time, i.e.,

the sojourn time of a customer with service time y. We show that there exists a critical service

time y* such that SRPT is better than FIFO for service times below y* and worse for service times

larger than y*. A performance indicator is the fraction of customers with service time exceeding

y*. We show that this fraction is close to zero for both low and high loads; numerical experiments

suggest that this fraction is still very small for moderate values of the load.

This paper is organized as follows. Section 2 introduces notation and states some preliminary

results. In particular, the decay rates of the workload and busy period are derived in complete

generality. Section 3 treats a two-class priority queue with renewal input and investigates the tail

behavior of the low-priority waiting time. The results on SRPT are presented in Section 4. Section

5 treats various implications of the results in Sections 3 and 4. First, we compare our results with

the decay rates for LIFO and FIFO, and show that the decay rate of the sojourn time under SRPT

is strictly in between these two if the service-time distribution has mass at its right endpoint. We

then treat the special case of Poisson arrivals; in particular we show that our results for the priority

queue agree with those of Abate & Whitt [1]. In addition, we consider the behavior of the decay

rates in heavy traffic. Conditional sojourn times are investigated in Section 6. We summarize our

results and propose directions for further research in Section 7.

2 Preliminaries: workload and busy period

In this section we introduce the notation and derive two preliminary results. We consider a station­

ary, work-conserving GIIGIII queue, with the server working at unit speed. Generic inter-arrival

and service times are denoted by A and B. To avoid trivialities, we assume that P{B > A} > 0

(otherwise there would be no delays). Define the system load p = lE{B}/lE{A} < 1. Since p < 1,

the workload process is positive recurrent and the busy period P has finite mean. The moment
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generating function of a random variable X is denoted by lPx(s) = lE{esX }. Throughout the paper

we assume that B is light-tailed, i.e., that lPB (s) is finite in a neighborhood of 0. Let W be the

workload seen by a customer upon arrival in steady state. This workload coincides with the FIFO

waiting time. Furthermore, let WY be the steady-state workload on arrival epochs in the GIIGIII

queue with service times BY = BI(B < y). Let pY denote the busy period in such a queue. Our

first preliminary result concerns the logarithmic tail asymptotics for W.

Proposition 2.1 As x ---t 00, we have that log JP>{W > x} tV -'Ywx, with

'Yw = sup{s: lPA(-S)lPB(S) ~ I}. (2.1)

We call 'Yw the decay rate of W. Generally, for any random variable U, we call 'Yu the decay

rate of U if for x ---t 00,

logJP>{U > x} = -'Yux+o(x).

If lPA(-'Yw)lPB(-Yw) = 1; several proofs of Proposition 2.1 are available, see e.g. Asmussen

[2], Ganesh et ai. [11] and Glynn & Whitt [12]. We believe that the result in its present general­

ity is known as well, but could not find a reference. For completeness, a short proof is included here.

Proof of Proposition 2.1

The upper bound follows from a famous result of Kingman [14]:

10gJP>{W > x} ~ -'Ywx.

For the lower bound we use a truncation argument. From Theorem XIII.5.3 of [2] (the condition

of that theorem is easily seen to be satisfied for bounded service times), it follows that

log JP>{WY > x} tV -'Y~x,

with 'YJt = sup{s: lPA(-S)lPBv(S) ~ I}. Consequently, since JP>{W > x} 2: JP>{WY > x},

lim inf .!.log JP>{W > x} 2: -'Y~.
x .....co x

Since lPBv(S) is increasing in y, and lPBv(S) converges to lPB(S) as y ---t 00, the decay rate 'YJt is

decreasing in y, and converges to a limit 'Y~ 2: 'Yw. Since 'Y~ E [0, 'YJt] for any y, and lPA(-S)lPBv(S) is

convex in s and has a negative derivative in 0, we have lPA(-'Y~)lP BV('Y~) ~ 1 for all y. Consequently,

This implies that 'Y~ ~ 'Yw, so that limY.....co 'YJt = 'Y~ = 'Yw. This yields the desired lower limit. 0
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We continue by deriving an expression for the decay rate /,p of the busy period P. Sufficient

conditions for precise asymptotics of lP{P > x}, which are of the form Cx-3/2e-'Px, are given in

Palmowski & Rolski [19]. These asymptotics follow from a detailed analysis, involving a change-of­

measure argument. We show that logarithmic asymptotics (which are of course implied by precise

asymptotics) can be given without any further assumptions.

Proposition 2.2 As x ~ 00, we have log lP{P > x} r'V -/,px, with

/,p = sup{s - w(s)},
8;:::0

(2.2)

(2.3)

Proof

We first derive an upper bound. Let X(t) be the amount of work offered to the queue in the interval

[0, t]. In Lemma 2.1 of Mandjes & Zwart [17] it is shown that for each s ~ 0,

w(s) = lim ~ loglE{e8X(t)}.
t-+oo t

Using the Chernoff bound, we have for all s ~ 0,

lP{P > t} ::; lP{X(t) > t} ::; e-8t+logJE{exp{8X(t)}}.

Consequently,

lim sup ~ loglP{P > t} ::; -s + lim sup ~ loglE{exp{sX(t)}} = -(s - w(s)).
t-+oo t t-+oo t

Minimizing over s yields the upper bound for lP{P > t}. We now turn to the lower bound, for

which we again use a truncation argument. First, note that

lP{P > x} ~ lP{pY > x}.

For truncated service times, the assumptions in [19] for the exact asymptotics (d. Equation (33)

in [19]) are satisfied, and we have, with obvious notation,

liminf ~loglP{P> x} ~ lim .!.loglP{PY > x} = -sup{s - wY(s)} = -/':.
x-+oo x x-+oo x 8;:::0

So to prove the theorem, it suffices to show that /'~ ~ /,p for y ~ 00. Define fY (s) = s - wY(s).

It is clear that fY(s) ~ f(s) = s - w(s) pointwise as y ~ 00 and that fY(s) is decreasing in y.

Consequently, we have that the limit of /'~ for y ~ 00 exists and that

/'; = lim /'~ = lim sup fY(s) ~ sup f(s) = /,p-
y-+oo y-+oo 8;:::0 8;:::0
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It remains to show that the reverse inequality holds. For this, we use an argument similar to one in

the proof of Cramers theorem (d. Dembo & Zeitouni [9], p. 33). Take Yo such that lP{BY > A} > 0

for y > Yo· Then there exist 5, TJ > 0 such that lP{BY - A 2: 5} 2: TJ > 0 for y 2: Yo. Hence, for

y 2: Yo,

For s large enough, we now have

1
4.>A(-S) 2: 4.>BY(S)

Since 4.>A:1(s) is increasing in s, we find that for sand y large enough,

s+4.>A:l(4.>B~(S)) S;s+4.>A:
1

(4.>A(-S)) =0.

Since 4.> A:1 (1/4.>By (s )) is decreasing in y and is continuous in s, we see that for y 2: Yo the level

sets L y = {s : fY(s) 2: "Y;} are compact. Moreover, since fY(s) is decreasing in y, the level sets are

nested with respect to y. Consequently, the intersection of the level sets L y contains at least one

element, say so· By the definition of So, we have fY(so) 2: "Y; for every y. Thus, since fY converges

pointwise,

"Yp = supf(s) 2: f(80) = lim fY(so) 2: "Y;.
s~O y-+oo

We conclude that "Y~ -t "Yp as Y -t 00, which completes the proof.

3 The GI / GI /1 priority queue

o

In this section, we consider the following GI/GI /1 two-class priority queue. Customers arrive

according to a renewal process with generic inter-arrival time A. An arriving customer is of class

1 with probability p, in which case he has service time Bl. Customers of class 2 have service time

B2. Class-l customers have priority over class-2 customers. We assume that 0 < p < 1, and that

plE{B1} +(1- p)lE{B2 } < lE{A}, which ensures that the priority queue is stable. We are interested

in the steady-state waiting time W2 of a class-2 customer, that is, the time a class-2 customer has

to wait before he enters service for the first time. Note that W2 is independent of whether the

priority mechanism is preemptive or not.

Let Nl (t) be the renewal process generated by the arrivals of the class-l customers, i.e., N 1(t) =

max{n : A1,1 + ... + A 1,n S; t}. Here A1,i is the time between the arrival of the (i - l)-st and i-th

customer. A generic class-l inter-arrival time is denoted by AI. Note that Al is a geometric sum

of "original" inter-arrival times A:
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Define

Nl(t)

XI(t) = L BI,i.
i=1

Hence, XI(t) is the amount of work of type 1 that has arrived in the system by time t. Let PI be

a generic busy period of class 1 customers. Finally, let PI (x) be a busy period of class-1 customers

with an initial customer of size x, so

Denoting the total workload in the queue at arrivals again by W (d. Section 2), we have the

following fundamental identity:

(3.1)

where W and {PI(x),x 2: O} are independent. This identity holds since, using a discrete-time

version of PASTA, W is also the workload as seen by an arriving customer of class 2. Set

(3.2)

The main result of this section is the following.

Theorem 3.1 As x ---t 00, we have 10glP'{W2 > x} "" -'YW2X, with

'YW2 = sup {s - WI(S)}.
sE[O"w]

(3.3)

Before we give a proof of this theorem, we first describe some heuristics, starting from W2 g,
PI(W). The most likely way for W2 to become large (i.e., W2 > x) involves a combination of two

events: (i) W is of the order ax for some constant a 2: 0; (ii) PI (ax) is of the order x. Clearly, there

is a trade-off: as a becomes larger, scenario (i) become less likely, while scenario (ii) becomes more

likely. Thus, we need to find the optimal value of a. For this we need to know the large-deviations

decay rates associated with events (i) and (ii). The decay rate of event (i) is simply a'Yw. To obtain

the decay rate of event (ii), note that

One can show that the RHS probability has decay rate sUPs2':o{(l- a)s - WI (s)}. Thus, the optimal

value of a, and the decay rate 'YW2' can be found by optimizing the expression

inf{a'Yw + sup[(l- a)s + WI(S)]}.
a2':° s2':O
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It is possible to show that the value of this program coincides with SUPsE[O,'Yw] { S- Wl(S)}, Moreover,

the optimal value of a is 0 if the optimizing argument of S - Wl(S) is strictly less than 'Yw, and it is

1- w~ ('Yw) if SUPsE[O,'Yw] {s - Wl(S)} = 'Yw - Wl('Yw). In the proof below, we only use these heuristics

to "guess" the correct value of a.

Note that the two cases a > 0 and a = 0 correspond to two qualitatively different scenarios

leading to a large value of W2 • If a = 0, then the customer sees a "normal" amount of work upon

arrival, while a > 0 results in a workload of the order ax at time O. This distinction between two

different scenarios is typical in priority queueing, see Abate & Whitt [1] and Mandjes & Van Uitert

[16] for more discussion.

Proof

We start with the upper bound. Using the Chernoff bound, we find that for S 2: 0,

Using (2.3) with X(t) replaced by X l (t), we see that for all S E [O,'Yw),

lim sup .!.logJP>{W2 > x} :::; -[s - Wl(S)],
X-+OO X

The proof of the upper bound is completed by minimizing over s, and noting that SUPSE[O,'Yw){s­

Wl(S)} = SUPsE[O,'Yw]{s - Wl(S)},

We now turn to the lower bound. From the proof of Proposition 2.2, we see that PI has decay

rate 'YPI = suPs~o{s - Wl(S)}, Let SI be the unique optimizing argument. In addition, let r be the

probability that at the arrival of a class-2 customer to the steady state queue at least one customer

of type 1 is waiting. It is obvious that r > O. Since PI (W) 2:st PIon this event, we see that

JP'{Pl (W) > x} 2: rJP>{Pl > x},

which by (3.1) implies that

lim inf .!.log JP'{W2 > x} 2: -'YPI'
x-+oo X

Thus, if SI :::; 'Yw, we can conclude from this and the upper bound that

lim .!.log JP>{W2 > x} = -'YPI'
x-+oo X

What remains is to consider the case S1 > 'Yw. Since the concave function S - WI (s) is increasing

between 0 and SI, we see that SUPSE[O,'Yw]{s - Wl(S)} = 'Yw - wlbw). Thus, to complete the proof

of the theorem, it suffices to show that

(3.4)
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Note that for any a> 0,

(3.5)

Combining (3.5) and Lemma 3.2 below, we see that by taking a = 1 - \lt~bw),

log IP{W2 > x} ~ -a'Ywx + o(x) + log IP{PI (ax) > x} = -xbw - WI bw)) + o(x),

which coincides with (3.4), as was required.

We now provide the result that was quoted in the proof above.

Lemma 3.2 Set a = 1 - \lt~ bw). If 'Yw < 811 then

o

Proof

To prove the lemma we use a change-of-measure argument. Define a probability measure IPv{-} for

v ~ 0 such that

IPv{AI,i E dx} = e-W1 (v)xIP{AI ,i E dx}/<I> A l(-WI(V)), i 2: 1,

IPv{BI,i E dx} = evxIP{BI,i E dX}/<I>Bl(V), i 2: 1.

Choose v = Ve such that

E: < a.

We denote this probability measure by IPVe {.}. The drift under this new measure is 1-a+E, making

the event {PI (ax) > x} extremely likely for large x. Note that Vo = 'Yw, by the definition of a, and

since \lt~ (8) is strictly increasing.

Let Fn be the Borel cr-algebra generated by AI,I, ... , AI,n, BI,I, ... , BI,n. Define S;~I = AI,I +
... + AI,n and S!f1 = BI,I + ... + BI,n. Note that NI(x) := NI(X) + 1 is a stopping time w.r.t. the

filtration (Fn). Furthermore, note that the event {PI (ax) > x} is FiV(xrmeasurable. Finally, note

that for every E: > 0 small enough, the process l/M~, n 2: 1, with

is a martingale w.r.t. Fn under IP{-}, since the definition of WI ensures that <I>Al (-WI (ve))<I> BI (ve) =
1. Thus, we have the following fundamental identity (see for example Theorem XIII.3.2 in [2]):
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Furthermore, we have for any event S ~ Fi!I(x),

(3.6)

Take here

S == Se := {S~:(X) :::; (1 - a + c)x} .

Note that S~:(X)+I > x by definition and apply the definition of Se to obtain from (3.6) the following

lower bound for lP'{PI (ax) > x}:

1 1
liminf -loglP'{PI (ax) > x} 2:: -ve(1- a + c) + 'l1 1(ve) + liminf -log lP've {PI (ax) > x, Se}.

x--+oo X X--+OO X

By the law of large numbers, we have that lP've {PI (ax) > x; Se} is bounded away from zero,

uniformly in x for every c > O. Consequently,

Now let c 1O. This yields

liminf.!:.loglP'{PI(ax) > x} 2:: -/'w(1-a)+'l1 l bw),
X--+OO x

and the statement of the lemma follows. o

From Theorem 3.1 we can deduce the decay rate of the sojourn time V2 of class-2 customers.

This turns out to be the same for both preemptive and non-preemptive service.

Theorem 3.3 As x ---t 00, we have loglP'{V2 > x} rv -/'W2X, where /'W2 is as in (3.3).

Proof

For the non-preemptive case, we have V2 = W 2 + B2, where W2 and B2 are independent. Since

the decay rate of B2 is larger than /'W2' and since the decay rate of a sum of independent random

variables is equal to the smallest decay rate (see for example [15] for a short proof), the result for

this case follows immediately. In the preemptive case, we use that

which gives us the lower bound. The upper bound follows the same lines of the proof of Theorem

3.1 and noting that lE{e'Yw B2} < 00. 0

10



4 Shortest Remaining Processing Time

In this section we present our results on the sojourn time under the SRPT discipline. Define VSRPT

as the steady-state sojourn time of a customer under the preemptive SRPT discipline. Further,

define the right endpoint XB by XB = sup{x : lP{B > x} > O}. When it comes to determining the

decay rate of VSRPT, it turns out to be crucial whether

lP{B = XB} = 0, (4.1)

or not. In the first subsection, we show that if (4.1) holds, then the decay rate of VSRPT is equal to

'Yp, the decay rate of the busy period P. If (4.1) does not hold, the situation is more complicated.

In that case we use the results of the previous section to show that the decay rate of VSRPT is equal

to 'YW2' where W2 is the waiting time in a certain auxiliary priority queue. This is the subject of

the second subsection. We also show that for the non-preemptive SRPT discipline the same results

hold.

4.1 No mass at the right endpoint

In this section we prove the following theorem.

Theorem 4.1 Suppose that lP{B = XB} = O. Then loglP{VsRPT > x} f"V -'YpX for x ~ 00, with

'Yp as in (2.2).

Proof

Let VSRPT be the sojourn time of a tagged customer with service time B. Since VSRPT :::; P*,

where P* is the residual busy period P(W), and since for light tails the decay rate of P* coincides

with that of P (this follows from Lemma 3.2 in [1]), we see that

lim sup ~ log lP{VSRPT > x} :::; -'Yp'
x--+oo x

Thus, it suffices to show that the corresponding result holds for the lower limit. For this, we

construct a lower bound for lP{VSRPT > x}. Assume first that XB = 00. Let A be the last inter­

arrival time before the tagged customer arrives, Bo be the service time of that customer, and a be

such that lP{A < a} > O. Then, for all y,

lP{VSRPT > x} > lP{VSRPT > x;B > y,A < a,Bo :::; y}

> lP{A < a}lP{B > y}lP{Bo:::; y}lP{py-a > x}.

The last inequality holds since conditional on A < a, B > y and B o :::; y, the tagged customer

has to wait at least for the sub-busy period generated by the customer that arrived before him,
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and this sub-busy period is stochastically larger than py-a. Since JP>{A < a}JP>{B > y} > 0, and

JP>{Bo :s; y} > 0 for y large enough, we have that

lim inf .!.log JP>{VSRPT > x} 2: -'Yp
y- a

x--+oo x

for y large enough. Letting y ---t X B = 00, we obtain 'Y~-a ---t 'Yp, as in the proof of Proposition 2.2.

If XB < 00, the above proof can be modified in a straightforward way if JP>{A < a} > 0

for all a > O. However, this may not be the case in general and therefore we have to make a

more involved construction. By definition of XB, there exists a decreasing sequence (En) such that

JP>{XB - En < B < XB - En/2} > 0 for all n, and En ---t 0 as n ---t 00. Since JP>{B > A} > 0,

we can assume that El is such that JP>{A < XB - 2Ed > O. Let Rn be the event that the last

LxB/ EnJ customers that arrived before the tagged customer had a service time in the interval

[XB - En, XB - En/2]' and that the last LXB/EnJ inter-arrival times were smaller than XB - 2En. By

definition of En, we have IP'{Rn} > 0 for all n.

Furthermore, by the SRPT priority rule, we see by induction that on the event Rn, after

the kth of the last n inter-arrival times, there is a customer with remaining service time larger

than kEn. Hence, at the arrival of the tagged customer, there is a customer in the system with

remaining service time in the interval [XB - En, XB - En/2]. If the tagged customer has service time

B > XB - En/2, his sojourn time satisfies VSRPT 2: pXB-en on Rn. Consequently, for all n E N,

This implies

liminf .!.log JP>{VSRPT > x} 2: _'YpxB-en.
X--+OO X

Letting n ---t 00, and hence En 10, we get 'Y:B- en ---t 'Yp, as before. This completes the proof. 0

The property that the decay rate of the sojourn time is equal to that of the busy period is

shared by a number of disciplines, see Section 5.1. Further, we remark that for light tails, 'Yp is the

smallest possible decay rate for the sojourn time in the class of all work-conserving disciplines: the

sojourn time is bounded above by the residual busy period P*, and for light-tailed service times

P* has decay rate 'Yp (d. Lemma 3.2 in [1]).

4.2 Mass at right endpoint

If there is mass at the right endpoint XB of the service-time distribution, then the tail behavior of

VSRPT is more complicated. To obtain the decay rate of VSRPT for this case, we identify the SRPT

queue with the following two-class priority queue. Let the customers of class 1 be the customers

with service time strictly less than XB. Then B 2 = XB and B 1 is such that

x 2: O.
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Theorem 4.2 Suppose that JP>{B = XB} > O. Then logJP>{VsRPT > x} rv -,VX for x --t 00, with

IV = sup {s - WI(S)},
sE[O,"Yw]

where WI is as in (3.2), and B I is as in (4.2).

(4.3)

Proof

First, note that if q = JP>{B = XB} = 1, we have a G/D/1 SRPT queue, which has the same

dynamics as a FIFO queue. Indeed we obtain WI == 0, implying IV = IW' d. Proposition 2.1.

Assume therefore that 0 < q < 1, let VSRPT be the sojourn time of a tagged customer with service

time B, and write

JP>{VSRPT > x} = qJP>{VSRPT > x IB = XB} + (1- q)JP>{VSRPT > x I B < XB}.

From the nature of the SRPT discipline, or a simple coupling argument, it is obvious that

JP>{VSRPT > x I B < XB} ::S JP>{VSRPT > x I B = XB}.

Therefore, it suffices to consider the tail behavior of VSRPT, where

JP>{VSRPT::S x} = JP>{VSRPT::S x I B = XB}.

First, we note that VSRPT is bounded from below by the time it takes until our tagged customer

receives service for the first time. A crucial observation is that this period coincides with the

low priority waiting-time W2 defined in Section 3. Second, note that VSRPT is upper bounded by

the sojourn time V2 of a class-2 customer in the above priority queue. Hence, we have W2 ::Sst

VSRPT ::Sst V2·

Further, V2 satisfies V2 4 PI(W + XB) for preemptive service; for non-preemptive service, we

have V2 4 PI (W) + x B. Since the logarithmic asymptotics of W + xB coincide with those of W, we

can mimic the proof of Theorem 3.1 to see that in both cases the decay rate of V2 coincides with

that of W2. Hence the decay rate of VSRPT is given by (3.3), and the proof is completed. 0

The intuition of how VSRPT becomes large is the same as that of W2 in Section 3. In Section

5.1 below, we show that if there is mass in the endpoint XB, then the decay rate of the sojourn

time lies strictly between the maximal value (obtained for FIFO) and the minimal value (LIFO).

5 Complements

In the previous two sections we have derived expressions for the decay rates I W 2 and IV' In this

section we derive some properties of these decay rates. Specifically, in Section 5.1 we compare IW2

13



and lV with lW and lP' We show that for q = IP'{B = XB} E (0,1), we always have lP < lW2 < lW'

Consequently, if q E (0,1), we also find that lV = lV(q) E hp'lw). As explained in the introduction,

this is a non-standard result. We also indicate that lV can take any value between lP and lW'

depending on the value of q.

Further, in Section 5.2 we specialize our expression of lW2 to the case of Poisson arrivals. For

priority queues, a quite involved expression for the decay rate was given in [1]. We show that this

expression can be simplified, and that it coincides with our expression of lW2'

Finally, in Section 5.3, we derive heavy-traffic approximations for lW2'

5.1 Comparison with other service disciplines

In this subsection, we compare the decay rates lW2 and lV with the decay rate of the sojourn time

under FIFO and LIFO, which respectively equal lW and lP'

We first show that for the priority queue described in Section 3, the decay rate of W2 is different

from those of P and W.

Proposition 5.1 Assume 0 < p < 1. Then lP < lW2 < lW'

Proof

Since 'l1 1(s) > 0 for s > 0, we have by Theorem 3.1 that

lW2 = sup {s - 'l1 1(s)} < sup S = lW'
sE[O,'Yw] SE[O,'Yw]

To prove the inequality lW2 > lP' we provide a different construction of the function 'l1 1(s). Let

Bp be a service time which is equal to B 1 with probability p and 0 with probability 1 - p. It is

clear that <I>Bp(S) < <I>B(S). The amount of work X 1(t) generated by class-l customers between

time 0 and t is the same in distribution as the amount of work generated by the arrival process

with inter-arrival times A and service times Bp . We thus get that 'l11(s) = -<I>A1(lj<I>Bp(s)). Since

<I>A(S) is strictly increasing in s, so is its inverse <I>A1(s). Combining this with <I>Bp(S) < <I>B(S) leads

to the conclusion that 'l1 1(s) < 'l1(s). Recall that the residual busy period P* satisfies P* 4 peW);

its decay rate is given by sUPsE[O,'Yw]{s - 'l1(s)}, as can be seen by mimicking the proof of Theorem

3.1. Hence,

lW2 = sup {s - 'l1 1(s)} > sup {s - 'l1(s)} = lp.'
sE[O,'Yw] sE[O,'Yw]

The proof is completed by recalling that for light-tailed service times, lP = lP*'

(5.1)

o

From Theorem 4.2 and Proposition 5.1 we conclude a similar result for the SRPT discipline.

Corollary 5.2 If 0 < IP'{B = XB} < 1, then lP < lV < lW'
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Hence, if there is mass in the endpoint XB, then the decay rate of the sojourn time under SRPT

lies strictly between those under LIFO and FIFO.

The following consequence of Theorem 4.2 indicates that in some sense, all values between

those of LIFO and FIFO are assumed. Let Fg be the mixture of a distribution bounded by c, and

a distribution with all mass in c, such that lP{B = c} = q. Assume that c < lE{A}, and let 'Yv(q)

denote the decay rate of the sojourn time in a queue with service-time distribution Fq .

Proposition 5.3 The decay rate 'Yv(q) is continuous in q. In particular, it increases from 'Yp(O)

to 'Yw (1), and assumes all values in between.

Proof

By Theorem 4.2, it is enough to show that 'Yw(q) and WI(S) are continuous in q. Since cPBI is

constant in q, and cPAl is continuous in q, also WI (s) is continuous in q. Furthermore, since cPA is

constant in q, cPB is continuous in q, and 'Yw(q) is finite for all q, Proposition 2.2 implies that 'Yw(p)

is continuous in q, and the proof is completed. [J

Table 1 below shows the decay rates of the sojourn time that are known in the literature. It

turns out that the property in Corollary 5.2 is quite special, since almost all other known decay

rates are either minimal or maximal.

decay rate discipline condition queue

'Yp (minimal), (2.1) LCFS [19] GI/GI/l

FB [15] M/GI/l

PS [17] 'tic> 0: loglP{B > clog x} = o(x) GI/GI/l

ROS [17] M/M/l

SRPT here lP{B = XB} = 0 GI/GI/l

'Y (in between) PS [10] M/D/l

'Yv (in between), (4.3) SRPT here O<lP{B=XB}<1 GI/GI/l

'Yw (maximal), (2.2) FCFS [20] GI/GI/l

SRPT IP'{B = XB} = 1 GI/D/l

Table 1: The decay rate of the sojourn time under several disciplines for light-tailed service times.

5.2 Poisson arrivals

Consider the priority queue of Section 3, with the additional assumption that A has an exponential

distribution with rate A. Letting Al = PA and A2 = (1- p)A, we get that WI(S) = AI(cPBI(S) -1).
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Thus, we have

'YW2 = sup {S - Al(<:I.>B1(S) -1)}.
sE[O,')'w]

Suppose that 1 - Al <:I.>Sl ('Yw) > O. Then the maximum value is attained in 'Yw and we have

This expression is rather explicit, as 'Yw is the positive solution of the equation

(5.2)

(5.3)

(5.4)

The goal of this subsection is to show that in the case of Poisson arrivals, our expression (5.3)

coincides with the expression of 'YW2 given by Abate & Whitt [1]. Assuming that lE{B1} = 1, it is

shown in [1], p. 18, that -'YW2 is the solution of 1(s) = 1IP, with

A PI ~ (1) P2
f(s) = ho (s) + 92e(ZI(S)),

PI + P2 PI + P2

h~I)(s) = 1- b1(sJ = 1 - b1(s) 92e(S) = 1 - 92(S) ,
S + PI - Plbl(S) ZI(S) , S921

where b1(s) is the LST of the MIGl1 busy period, 92(S) = <:I.>B2(-S) and 921 = lE{B2}.

Our expression of 'YW2 seems preferable, although we hasten to add that the form provided by

[1] is more convenient when considering the more complicated task of obtaining precise asymptotics,

as is done in [1].

We now simplify the description of 'YW2 in [1]. Since P = PI + P2, we have

1 = ~ = I(s) = PI 1- b1(s) + P2 1- 92(ZI(S)).
PI + P2 P PI + P2 ZI(S) PI + P2 ZI(s)lE{B2}

Hence,

Consequently,

(5.5)

Since the LST of the busy period satisfies the fixed point equation

(5.6)
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we can rewrite (5.5) as

and thus, using the definition of ZI (8),

Using the definition of IW in (5.4), we see that IW2 is the solution of IW = -ZI(8). We now give

an alternative expression for - ZI (8). An alternative expression for the busy period transform was

found by Rosenkrantz [21]: defining ¢(8) = Al(1- q,Bl (-8)) - 8, it holds that

(5.7)

Since q, Bl (8) is strictly increasing, it follows from (5.6) and (5.7) that ZI (8) = ¢-1 (s). Hence, IW2

is the solution of IW = _¢-I(s), and thus we obtain

which is indeed equal to our expression (5.3).

To conclude this section, we remark that for the M/G/1 queue, the decay rate IV can take on

a simple form. Suppose that 1 - Al q,~l (,w) > 0, and that °< JP>{B = x B} < 1. Then by Theorem

4.2 and the expression for IW given in (5.4), we have

IV = IW - Al(q,Bl(,W) -1) = A(q,B(,w) -1) - Al(q,Bl(,W) -1)

= A2(q,B2(,W) - 1) = AJP>{B = xB}(eXB'Yw -1).

5.3 Heavy traffic

We now examine the behavior of the decay rate IV of the SRPT sojourn time in heavy traffic. The

aim of this section is to show that the behavior of this decay rate critically depends upon whether

JP>{B = XB} > °or not. If JP>{B = XB} = 0, then IV = IP by Theorem 4.1. The results in Section

4.2 of [17] then imply that IV rv C(1- p)2 for some constant C. We now show that a fundamentally

different behavior applies if JP>{B = XB} > 0.

Since, in this case, we have a relationship with the GI / G1/1 priority queue, we consider first

the setting of Section 3. We let the service time B2 increase in such a way that P~ 1. Specifically,

we consider a sequence of systems indexed by r, such that p, AI, A 2 and B 1 are all fixed, and that

B2 = B 2(r) is such that the traffic load satisfies Pr = 1- l/r. Let Iw(Pr) denote the decay rate of

the workload in such a queue.
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If we let O"~ < 00 be the variance of A and assume that the variance of B(r) = B 1 + B 2(r)

converges to 0"1, then it holds that for r ~ 00 (d. Corollary 3 of [12]),

(5.8)

with K = 2/(0"~ + 0"1). In particular, "Yw(Pr) 1 O. Consequently, if r is large enough, we always

have "Yw2(Pr) = "Yw(Pr) - Wl("(w(Pr)) by Theorem 3.1. Since Wl(S) ,...., p(l)s as s 10, where p(l) is

the load in the high priority queue, we obtain the following heavy-traffic result for "YW2'

Proposition 5.4 For P~ 1 as described above, we have

"YW2 ,...., K(1 - p(I))(1 - p).

Thus, also "Yv is of the order (1- p) if JP>{B = XB} > O. This behavior is notably different from

the (1 - p)2 behavior of "Yp.

6 Conditional sojourn times

Our results in Section 4 and 5 show that the decay rate "Yv for SRPT is smaller than "Yw, which is

the decay rate of the waiting (and sojourn) time under FIFO. Thus, one could say that according

to this performance measure, SRPT is worse than FIFO.

The reason that the sojourn-time decay rate under SRPT is small is apparent when taking a

closer look at the proof in Section 4.1: the sojourn time of a customer with a (very) large service

time looks like a residual busy period. However, smaller customers may have a much shorter sojourn

time. In fact, for the conditional sojourn time VSRPT(Y) = [VSRPT I B = y] under the preemptive

SRPT discipline, the following proposition holds.

Proposition 6.1 IfJP>{B = y} = 0, then logJP>{VsRPT(Y) > x},...., -"Y~x as x ~ 00.

Proof

For the lower bound, we remark that VSRPT(Y) is stochastically larger than the residual busy

period p*y in the queue with service time BY. This residual busy period has decay rate "Y~. For the

upper bound, we consider an alternative queue with generic service time BY, stationary workload

at arrival instants WYand busy period pY. Now observe that in the original queue, at any point

in time, at most one customer with original service time larger than Y has remaining service time

smaller han y. Hence, we can bound

VSRPT(Y) ~st pY(WY + Y + y),
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where pY(x) is a busy period in the alternative queue starting with an exceptional customer of

length x. Applying the Chernoff bound, and arguing like in the proof of Proposition 2.2, we find

lim sup ~ 10gJP>{VSRPT(Y) > t} ~ - sup {s - 'lJY(s)} = -'YZ*,
t-+oo t SE[O,')'wY ]

where the last equality follows from (5.1). The upper bound follows from noting that pY and p*y

have the same decay rate, and the proof is completed. 0

Suppose that B has a density, so that 'YZ is continuous in y. Then the function 'YZ strictly

decreases in Y, and converges to 'Yp > 'Yw as Y ---t 00. Further, 'Y~ ---t 00 as Y ---t 0, since 'lJY(s) ---t 0

as y ---t O. Hence, there exists a critical value y* for which 'Yf = 'Yw. Thus, when the decay rate

is used as a performance measure, one could say that FIFO is a better discipline than SRPT for

customers of size larger than y*; the fraction of customers that suffer from a change from FIFO to

SRPT is JP>{B > y*}. We now describe the behavior of y* as a function of p for p ---t 1 and p ---t O.

Proposition 6.2 Let y* = sup{y : 'Y~ 2: 'Yw}. If p ---t 1, then y* ---t XB.

Proof

Let y < XB be fixed, and let 'Y~(p) be the decay rate of pY as a function of p, and define 'Yw(p)

similarly. Since pY is a busy period in a stable queue, even when p = 1 in the original queue, we

have 'Y~(p) 2: 'Y~(1) > 0 for all p < 1. By (5.8), we have for p large enough,

Hence, for p large enough, y* 2: y. Since y < XB was arbitrary, the proof is completed. 0

Proposition 6.3 If the service time B has decay mte 'Yb E (0,00), then y* ---t 00 for p ---t O.

Proof

Let p ---t 0 by setting the generic inter-arrival time equal to rA and letting r ---t 00. Since lPr A (x) ---t 0

for all x < 0, we have lP;l(x) ---t 0 for all 0 < x < 1. Hence, for all y,

P ---t O. (6.9)

The workload does not depend on the discipline as long as the discipline is work-conserving. Further,

conditioned on it being positive, the workload under FIFO is stochastically larger than a residual

service time, which for light-tailed distributions has the same decay rate as B. Hence, we have

'Yw(p) ~ 'Yb < 00 for all p. It then follows from (6.9) that 'Yit(p) > 'Yw(p) eventually as p ---t 0 for all

y, and we can conclude that y* ---t 00 as p ---t O. 0
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6.1 Numerical example

As an illustration, we compute y* and lP{B > y*} for the M / M /1 queue with lE{B} = 1 and arrival

rate>. (so that p = >.). Figure 1 shows the probabilities lP{B > y*} for various values of p.
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Figure 1: The probabilities lP{B > y*(p)} for p E (0,1) in the M/M/l queue.

From the figure, it is clear that y* becomes very large under low and high loads. But even for

moderate values of p it is clear that about 85 percent of the customers would prefer (from a large­

deviations point of view) SRPT over FIFO.

7 Conclusions

To conclude the paper, we summarize our results. For the GI/GI /1 queue with light-tailed service

times, we obtained expressions for the logarithmic decay rate of the tail of the workload, the busy

period, the waiting time and sojourn time of low-priority customers in a priority queue, and the

sojourn time under the (preemptive and non-preemptive) SRPT discipline.

For the sojourn time under SRPT, it turns out that there are three different regimes, namely

for service times with no mass, with some mass and with all mass in the endpoint of the service-time

distribution. In the first case the decay rate is minimal among all work-conserving disciplines, in

the last case it is maximal, but if there is some mass in the endpoint, then the decay rate lies strictly

in between these two. The large-deviations results for the unconditional sojourn times suggest that

a switch from FIFO to SRPT is not advisable. The results in Section 6 show that this suggestion

is only valid for very large service times: in the M / M /1 queue, at least about 85 percent of the

customers would benefit from a change from FIFO to SRPT.
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There are several topics that are interesting for further research. First of all, large deviations

for the queue length under SRPT are not well understood. A second problem is to obtain precise

asymptotics for the tail behavior of the low-priority waiting time, or perhaps even the sojourn

time. Finally, it would be interesting to compare conditional sojourn times of FIFO and PS from a

large-deviations point of view. It is not clear to us which discipline performs better, and what the

influence of the job size might be.
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