47 research outputs found

    Association between CD14 gene polymorphisms and disease phenotype in sarcoidosis

    Get PDF
    SummaryAlthough the etiology of sarcoidosis is unknown, genetic susceptibility has been demonstrated. Granuloma formation is a key feature in the pathophysiology of sarcoidosis and Crohn’s Disease, raising the possibility that these diseases share common pathogenetic pathways. An association between sarcoidosis and the protein “CD14”, a molecule that is part of the lipopolysaccharide (LPS) cell surface receptor complex, has been suggested.In the current study we evaluated the CD14 gene promoter 159 C→T polymorphic site and soluble CD14 levels in a cohort of 74 sarcoidosis patients compared to 85 healthy controls. We further sought to identify correlations between clinical phenotype, specific genotypes and soluble CD14 levels.We found the TT genotype to be more prevalent in the sarcoidosis patient group than in controls (p=0.03). Serum levels of soluble CD14 were higher in the sarcoidosis patients (p=0.001). Within the patient cohort, CC homozygous patients presented at an older age with milder disease as assessed with the SAC score, longer time to diagnosis, and less impairment of pulmonary function tests.Our study suggests a role of CD14 in the pathogenesis of sarcoidosis, and a clinical phenotype-genotype association. Further mechanistic and epidemiologic studies are needed in order to establish the specific role of CD14 in the etiology, pathogenesis and clinical phenotype of sarcoidosis

    The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer

    Full text link
    Lung cancer is the leading cause of cancer deaths in the United States. Current therapies are inadequate. Histone deacetylase inhibitors (HDACi) are a recently developed class of anticancer agents that cause increased acetylation of core histones and nonhistone proteins leading to modulation of gene expression and protein activityin - volved in cancer cell growth and survival pathways. We examined the efficacyof the HDACi panobinostat (LBH589) in a wide range of lung cancers and mesotheliomas. Panobinostat was cytotoxic in almost all 37 cancer cell lines tested. IC50 and LD50 values were in the low nmol/L range (4–470 nmol/L; median, 20 nmol/L). Small cell lung cancer (SCLC) cell lines were among the most sensitive lines, with LD50 values consistently <25 nmol/L. In lung cancer and mesothelioma animal models, panobinostat significantlyde creased tumor growth byan average of 62% when compared with vehicle control. Panobinostat was equallye ffective in immunocompetent and severe combined immunodeficiencymic e, indicating that the inhibition of tumor growth by panobinostat was not due to direct immunologic effects.Panobinostat was, however, particularlyeffective in SCLC xenografts, and the addition of the chemotherapyag ent etoposide augmented antitumor effects. Protein analysis of treated tumor biopsies revealed elevated amounts of cell cycle regulators such as p21 and proapoptosis factors, such as caspase 3 and 7 and cleaved poly[ADP-ribose] polymerase, coupled with decreased levels of antiapoptotic factors such as Bcl-2 and Bcl-XL. These studies together suggest that panobinostat maybe a useful adjunct in the treatment of thoracic malignancies, especiallySCLC

    Neutrophil Diversity in Health and Disease

    No full text
    New evidence has challenged the outdated dogma that neutrophils are a homogeneous population of short-lived cells. Although neutrophil subpopulations with distinct functions have been reported under homeostatic and pathological conditions, a full understanding of neutrophil heterogeneity and plasticity is currently lacking. We review here current knowledge of neutrophil heterogeneity and diversity, highlighting the need for deep genomic, phenotypic, and functional profiling of the identified neutrophil subpopulations to determine whether these cells truly represent bona fide novel neutrophil subsets. We suggest that progress in understanding neutrophil heterogeneity will allow the identification of clinically relevant neutrophil subpopulations that may be used in the diagnosis of specific diseases and lead to the development of new therapeutic approaches

    The association between osteopontin gene polymorphisms, osteopontin expression and sarcoidosis.

    No full text
    BACKGROUND:Sarcoidosis is a systemic inflammatory disease of unknown etiology. Osteopontin (SPP1, OPN) is an extra cellular matrix glycoprotein and cytokine with a known role in granuloma formation and in autoimmune and inflammatory diseases. OBJECTIVE:To determine whether plasma OPN levels are elevated in patients with sarcoidosis and compare the frequency of four single nucleotide polymorphism (SNPs) variants in the OPN gene in sarcoidosis patients compared to healthy controls. METHODS:Demographic and clinical information, radiological studies and pulmonary function tests were evaluated in 113 patients with sarcoidosis and in 79 healthy controls. Blood samples were analyzed for SNPs of the OPN gene and for plasma OPN and CRP levels. Association between clinical features of disease and OPN levels as well as SNP frequencies was determined. RESULTS:Plasma OPN levels were higher in sarcoidosis patients than in healthy subjects, (median: 217 vs 122ng/ml, p<0.001). Area under the curve for receiver operator curves (ROC) was 0.798 (0.686-0.909 95% CI.) No differences were observed between sarcoidosis patients and controls in the frequency of any of the SNPs evaluated. Presence of lung parenchymal involvement was associated with SNP distribution at rs1126772 (p = 0.02). We found no correlation between SNPs distribution and plasma OPN levels. CONCLUSIONS:Osteopontin protein levels are elevated in sarcoidosis. We found no evidence for an association between SNPs on the osteopontin gene and plasma OPN levels or the presence of sarcoidosis, however, an association between genotype and several phenotypic clinical parameters of disease was observed

    Tumor-Derived Factors Differentially Affect the Recruitment and Plasticity of Neutrophils

    No full text
    Neutrophils play a key role in cancer biology. In contrast to circulating normal-density neutrophils (NDN), the amount of low-density neutrophils (LDN) significantly increases with tumor progression. The correlation between these neutrophil subpopulations and intratumoral neutrophils (TANs) is still under debate. Using 4T1 (breast) and AB12 (mesothelioma) tumor models, we aimed to elucidate the source of TANs and to assess the mechanisms driving neutrophils’ plasticity in cancer. Both NDN and LDN were found to migrate in response to CXCL1 and CXCL2 exposure, and co-infiltrate the tumor site ex vivo and in vivo, although LDN migration into the tumor was higher than NDN. Tumor-derived factors and chemokines, particularly CXCL1, were found to drive neutrophil phenotypical plasticity, inducing NDN to transition towards a low-density state (LD-NDN). LD-NDN appeared to differ from NDN by displaying a phenotypical profile similar to LDN in terms of nuclear morphology, surface receptor markers, decreased phagocytic abilities, and increased ROS production. Interestingly, all three subpopulations displayed comparable cytotoxic abilities towards tumor cells. Our data suggest that TANs originate from both LDN and NDN, and that a portion of LDN derives from NDN undergoing phenotypical changes. NDN plasticity resulted in a change in surface marker expression and functional activity, gaining characteristics of LDN

    The Bilateral Interplay between Cancer Immunotherapies and Neutrophils&rsquo; Phenotypes and Sub-Populations

    No full text
    Immunotherapy has become a leading modality for the treatment of cancer, but despite its increasing success, a substantial number of patients do not benefit from it. Cancer-related neutrophils have become, in recent years, a subject of growing interest. Distinct sub-populations of neutrophils have been identified at advanced stages of cancer. In this study, we aimed to evaluate the role of neutrophils in mediating the efficacy of immune checkpoint inhibitors (ICI) treatments (&alpha;-PD-1/PD-L1), by assessing lung tumor models in mice. We found that G-CSF overexpression by the tumor significantly potentiates the efficacy of ICI, whereas neutrophils&rsquo; depletion abrogated their responses. Adoptive transfer of circulating normal-density neutrophils (NDN) resulted in significantly reduced tumor growth, whereas low-density neutrophils (LDN) had no effect. We next investigated the effect of ICI on neutrophils&rsquo; functions. Following &alpha;-PD-L1 treatment, NDN displayed increased ROS production and increased cytotoxicity toward tumor cells but decreased degranulation. Together, our results suggest that neutrophils are important mediators of the ICI treatments and that mainly NDN are modulated following &alpha;-PD-L1 treatment. This research provides a better understanding of the function of neutrophils following immunotherapies and their impact on the efficacy of immunotherapy, supporting better understanding and future improvement of currently available treatments
    corecore