1,420 research outputs found

    Spin degrees of freedom and flattening of the spectra of single-particle excitations in strongly correlated Fermi systems

    Full text link
    The impact of long-range spin-spin correlations on the structure of a flat portion in single-particle spectra ξ(p)\xi(p), which emerges beyond the point, where the Landau state loses its stability, is studied. We supplement the well-known Nozieres model of a Fermi system with limited scalar long-range forces by a similar long-range spin-dependent term and calculate the spectra versus its strength gg. It is found that Nozieres results hold as long as g>0g>0. However, with gg changing its sign, the spontaneous magnetization is shown to arise at any nonzero gg. The increase of the strength g|g| is demonstrated to result in shrinkage of the domain in momentum space, occupied by the flat portion of ξ(p)\xi(p), and, eventually, in its vanishing.Comment: 7 pages, 15 figure

    Transport properties and the anisotropy of Ba_{1-x}K_xFe_2As_2 single crystals in normal and superconducting states

    Get PDF
    The transport and superconducting properties of Ba_{1-x}K_xFe_2As_2 single crystals with T_c = 31 K were studied. Both in-plane and out-of plane resistivity was measured by modified Montgomery method. The in-plane resistivity for all studied samples, obtained in the course of the same synthesis, is almost the same, unlike to the out-of plane resistivity, which differ considerably. We have found that the resistivity anisotropy \gamma=\rho_c /\rho_{ab} is almost temperature independent and lies in the range 10-30 for different samples. This, probably, indicates on the extrinsic nature of high out-of-plane resistivity, which may appear due to the presence of the flat defects along Fe-As layers in the samples. This statement is supported by comparatively small effective mass anisotropy, obtained from the upper critical field measurements, and from the observation of the so-called "Friedel transition", which indicates on the existence of some disorder in the samples in c-direction.Comment: 5 pages, 5 figure

    Mechanisms driving alteration of the Landau state in the vicinity of a second-order phase transition

    Full text link
    The rearrangement of the Fermi surface of a homogeneous Fermi system upon approach to a second-order phase transition is studied at zero temperature. The analysis begins with an investigation of solutions of the equation ϵ(p)=μ\epsilon(p)=\mu, a condition that ordinarily has the Fermi momentum pFp_F as a single root. The emergence of a bifurcation point in this equation is found to trigger a qualitative alteration of the Landau state, well before the collapse of the collective degree of freedom that is responsible for the second-order transition. The competition between mechanisms that drive rearrangement of the Landau quasiparticle distribution is explored, taking into account the feedback of the rearrangement on the spectrum of critical fluctuations. It is demonstrated that the transformation of the Landau state to a new ground state may be viewed as a first-order phase transition.Comment: 16 pages, 10 figure

    Latitudinal pattern in community-wide herbivory does not match the pattern in herbivory averaged across common plant species

    Get PDF
    The latitudinal herbivory hypothesis (LHH) predicts that plant losses to herbivores decrease from low to high latitudes. Although the LHH is a community-level hypothesis, it has been rarely tested with data on community-wide herbivory, i.e. the percentage of annual production of foliar biomass consumed by insects from all plant species at a given site. Therefore, we asked whether community-wide leaf herbivory follows the same latitudinal pattern as observed for an unweighted average of herbivory across common plant species. We selected 10 study sites in boreal forests from 60 to 69 degrees N along a 1,000-km long latitudinal gradient in NW Russia. We measured relative foliar losses to insect herbivores in seven woody plant species (jointly comprising over 95% of the community-wide above-ground biomass) and estimated their current-year foliar biomass. We averaged leaf herbivory for all seven species and calculated community-wide leaf herbivory by weighting the relative foliar losses of each plant species against the contribution of that species to the annual foliar biomass production. Leaf herbivory was five-fold higher in deciduous species than in conifers. Latitudinal patterns in herbivory varied from a significant poleward decrease in all deciduous species to a significant poleward increase in Norway spruce. Herbivory values, averaged across seven plant species, decreased with latitude and followed the pattern observed in deciduous plants due to their higher foliar losses compared with conifers. By contrast, community-wide herbivory did not change with latitude. This discrepancy emerged because the proportion of deciduous plant foliage in the community increased with increasing latitude, and this increase counterbalanced the simultaneous poleward decrease in losses of these species to insects. Synthesis. The herbivory measured by averaging relative losses of individual plant species and community-wide herbivory is likely to show different latitudinal patterns in various plant communities. The contributions of plant species to the total foliar biomass production should be taken into account in studies of spatial patterns of herbivory which test community-level hypotheses. This approach may provide new insight into macroecological research on biotic interactions and improve our understanding of the role of insect herbivores in ecosystem-level processes

    Detailed Electromechanical Model of Ventricular Wedge

    Full text link
    We developed a three-dimensional computational model for describing electro-mechanical behavior of wedge-shaped preparation extracted from the left ventricular wall including excitation wave propagation, high-resolution geometry and fiber orientation. The cardiac tissue is simulated by an incompressible hyperplastic material. We used non-linear partial differential equations describing the deformation of the cardiac tissue, and a detailed 'Ekaterinburg-Oxford' (EO) cellular model of the electrical and mechanical activity of the cardiomyocytes in the tissue. Electro-mechanical coupling in the model accounts for mechano-electric feedbacks both in the cells and in the tissue. Numerical experiments with the model of the wedge preparation formed of initially identical cardiomyocytes revealed that electrical and mechanical interaction between the cells, as well as intracellular mechanoelectric feedbacks caused pronounced nonuniformity of their behavior. © 2018 Creative Commons Attribution.Russian Foundation for Basic Research, RFBR: 18-31-00416Russian Academy of Sciences, RAS: АААА-А18- 118020590030-1This work was carried out within the framework of the IIF UrB RAS themes (Nos. AAAA-A18-118020590031-8) and was supported by RFBR (18-31-00416), the Program of the Presidium RAS #27 (project АААА-А18- 118020590030-1) and Act 211 Government of the Russian Federation, contract № 02.A03.21.0006

    Two Scenarios of the Quantum Critical Point

    Full text link
    Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state, related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different {\it topological} scenario of the QCP, associated with the emergence of bifurcation points in equation ϵ(p)=μ\epsilon(p)=\mu that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.Comment: 6 pages, added new discussion and 2 figure

    Normal state resistivity of Ba1x_{1-x}Kx_xFe2_2As2_2: evidence for multiband strong-coupling behavior

    Get PDF
    We present theoretical analysis of the normal state resistivity in multiband superconductors in the framework of Eliashberg theory. The results are compared with measurements of the temperature dependence of normal state resistivity of high-purity Ba0.68_{0.68}K0.32_{0.32}Fe2_{2}As2_{2} single crystals with the highest reported transition temperature TcT_c = 38.5 K. The experimental data demonstrate strong deviations from the Bloch-Gr\"{u}neisen behavior, namely the tendency to saturation of the resistivity at high temperatures. The observed behavior of the resistivity is explained within the two band scenario when the first band is strongly coupled and relatively clean, while the second band is weakly coupled and is characterized by much stronger impurity scattering.Comment: 4 pages, 3 figures, to be published in JETP Letters Vol.94, N

    Topological crossovers near a quantum critical point

    Full text link
    We study the temperature evolution of the single-particle spectrum ϵ(p)\epsilon(p) and quasiparticle momentum distribution n(p)n(p) of homogeneous strongly correlated Fermi systems beyond a point where the necessary condition for stability of the Landau state is violated, and the Fermi surface becomes multi-connected by virtue of a topological crossover. Attention is focused on the different non-Fermi-liquid temperature regimes experienced by a phase exhibiting a single additional hole pocket compared with the conventional Landau state. A critical experiment is proposed to elucidate the origin of NFL behavior in dense films of liquid 3^3He.Comment: 7 pages, 6 figure
    corecore