386 research outputs found

    Unkooperatives Kind bei Narkoseeinleitung: Theorie und Praxis

    Get PDF
    Zusammenfassung: Perioperative Angst und daraus resultierende mangelnde Kooperation bei der Narkoseeinleitung sind ein häufiges Problem in der Kinderanästhesie. Das Ausmaß der Angst hängt von verschiedenen kindlichen, aber auch von elterlichen Faktoren, dem Anästhesieteam sowie der kinderfreundlichen Atmosphäre und Infrastruktur des Krankenhauses ab. Neben einer Prämedikation gibt es verschiedene nichtpharmakologische Maßnahmen, um die kindliche Angst zu reduzieren und damit die Narkoseeinleitung zu erleichtern. Bleibt das Kind trotz aller vorbereitenden Maßnahmen weiterhin unkooperativ, muss grundsätzlich unter Berücksichtigung verschiedener Kriterien entschieden werden, ob der Eingriff, falls medizinisch vertretbar, verschoben wird oder ob die Narkoseeinleitung unter Anwendung von körperlichem Zwang durchgeführt werden sol

    Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters

    Get PDF
    Recent structural studies suggest that glucose transporter 1 (GLUT1)-mediated sugar transport is mediated by an alternating access transporter that successively presents exofacial (e2) and endofacial (e1) substrate-binding sites. Transport studies, however, indicate multiple, interacting (allosteric), and co-existent, exo- and endofacial GLUT1 ligand-binding sites. The present study asks whether these contradictory conclusions result from systematic analytical error or reveal a more fundamental relationship between transporter structure and function. Here, homology modeling supported the alternating access transporter model for sugar transport by confirming at least four GLUT1 conformations, the so-called outward, outward-occluded, inward-occluded, and inward GLUT1 conformations. Results from docking analysis suggested that outward and outward-occluded conformations present multiple beta-D-glucose and maltose interaction sites, whereas inward-occluded and inward conformations present only a single beta-D-glucose interaction site. Gln-282 contributed to sugar binding in all GLUT1 conformations via hydrogen bonding. Mutating Gln-282 to alanine (Q282A) doubled the Km(app) for 2-deoxy-D-glucose uptake, eliminated cis-allostery (stimulation of sugar uptake by subsaturating extracellular maltose) but not trans-allostery (uptake stimulation by subsaturating cytochalasin B). Cis-allostery persisted, but trans-allostery was lost in an oligomerization-deficient GLUT1 variant in which we substituted membrane helix 9 with the equivalent GLUT3 sequence. Moreover, Q282A eliminated cis- allostery in the oligomerization variant. These findings reconcile contradictory conclusions from structural and transport studies by suggesting that GLUT1 is an oligomer of allosteric, alternating access transporters in which 1) cis-allostery is mediated by intra-subunit interactions and 2) trans-allostery requires inter-subunit interactions

    Red wine and green tea flavonoids are cis-allosteric activators and competitive inhibitors of GLUT1-mediated sugar uptake

    Get PDF
    The anti-oxidant, flavonoid-rich content of red wine and green tea is reported to offer protection against cancer, cardiovascular disease and diabetes. Some studies, however, show that flavonoids inhibit GLUT1-mediated, facilitative glucose transport raising the possibility that their interaction with GLUT1 and subsequent, downstream effects on carbohydrate metabolism may also impact health. The present study explores the structure/function relationships of flavonoid-GLUT1 interactions. We find that low concentrations of flavonoids act as cis-allosteric activators of sugar uptake while higher concentrations competitively inhibit sugar uptake and noncompetitively inhibit sugar exit. Studies with heterologously expressed human GLUTs 1, 3 and 4 reveal that quercetin-GLUT1 and -GLUT4 interactions are stronger than quercetin-GLUT3 interactions, that ECG is more selective for GLUT1 while EGCG is less isoform-selective. Docking studies suggest that only one flavonoid can bind to GLUT1 at any instant, but sugar transport and ligand binding studies indicate that human erythrocyte GLUT1 can bind at least two flavonoid molecules simultaneously. Quercetin and EGCG are each characterized by positive, cooperative binding whereas EGC shows negative cooperative binding. These findings support recent studies suggesting that GLUT1 forms an oligomeric complex of interacting, allosteric, alternating access transporters. We discuss how modulation of facilitative glucose transporters could contribute to the protective actions of the flavonoids against diabetes and Alzheimer\u27s

    WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site

    Get PDF
    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with Ki(app) = 6 mum but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with Ki(app) = 0.3 mum but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 - GLUT1 - neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites

    Birefringent dispersive FDTD subgridding scheme

    Full text link

    STEM EBIC Mapping of the Metal-Insulator Transition in Thin-film NbO 2

    Get PDF
    This article has been published in a revised form in Microscopy and Microanalysis https://doi.org/10.1017/S1431927617007802. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © copyright holder

    Differential electron yield imaging with STXM

    Full text link
    Total electron yield (TEY) imaging is an established scanning transmission X-ray microscopy (STXM) technique that gives varying contrast based on a sample's geometry, elemental composition, and electrical conductivity. However, the TEY-STXM signal is determined solely by the electrons that the beam ejects from the sample. A related technique, X-ray beam-induced current (XBIC) imaging, is sensitive to electrons and holes independently, but requires electric fields in the sample. Here we report that multi-electrode devices can be wired to produce differential electron yield (DEY) contrast, which is also independently sensitive to electrons and holes, but does not require an electric field. Depending on whether the region illuminated by the focused STXM beam is better connected to one electrode or another, the DEY-STXM contrast changes sign. DEY-STXM images thus provide a vivid map of a device's connectivity landscape, which can be key to understanding device function and failure. To demonstrate an application in the area of failure analysis, we image a 100~nm, lithographically-defined aluminum nanowire that has failed after being stressed with a large current density.Comment: 8 pages, 6 figure
    corecore