25 research outputs found

    Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: Towards chiral attosecond pulses

    Get PDF
    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments

    Bright, single helicity, high harmonics driven by mid-infrared bicircular laser fields

    Get PDF
    [EN]High-harmonic generation (HHG) is a unique tabletop light source with femtosecond-to-attosecond pulse duration and tailorable polarization and beam shape. Here, we use counter-rotating femtosecond laser pulses of 0.8 µm and 2.0 μm to extend the photon energy range of circularly polarized high-harmonics and also generate single-helicity HHG spectra. By driving HHG in helium, we produce circularly polarized soft x-ray harmonics beyond 170 eV—the highest photon energy of circularly polarized HHG achieved to date. In an Ar medium, dense spectra at photon energies well beyond the Cooper minimum are generated, with regions composed of a single helicity—consistent with the generation of a train of circularly polarized attosecond pulses. Finally, we show theoretically that circularly polarized HHG photon energies can extend beyond the carbon K edge, extending the range of molecular and materials systems that can be accessed using dynamic HHG chiral spectro-microscopiesDepartment of Energy BES (DE-FG02-99ER14982); Air Force Office of Scientific Research (FA9550-16-1-0121); National Science Foundation (DGE-1144083, DGE-1650115); European Research Council (8511201); Ministerio de Ciencia, Innovación y Universidades (PID2019-106910GB-100); Junta de Castilla y León (SA287P18); Ramón y Cajal contract (RYC-2017-22745)

    Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields

    Get PDF
    source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.H. K. and M. M. graciously acknowledge support from the Department of Energy BES Award No. DE-FG02- 99ER14982 for the experimental implementation, as well as a MURI grant from the Air Force Office of Scientific Research under Award No. FA9550-16-1-0121 for the theory. J. E. and C. M. acknowledge support from National Science Foundation Graduate Research Fellowships (Grant No. DGE-1144083). C. H.-G. acknowl- edges support from the Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013), under REA Grant No. 328334, from Junta de Castilla y León (Project No. SA046U16) and Spanish Ministerio de Economía y Competitividad, MINECO (Projects No. FIS2013-44174-P and No. FIS2016-75652-P). Part of this work utilized the Janus supercomputer, which is sup- ported by the U.S. National Science Foundation (Grant No. CNS-0821794) and the University of Colorado Boulder

    Erratum: Non-collinear generation of angularly isolated circularly polarized high harmonics.

    Get PDF
    [EN]In the version of this Article originally published the blue dashed line was mislabelled in the legend in Fig. 3d and the label should have read i Evert. This has now been corrected in the online versions of the Article

    Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation

    Get PDF
    [EN]Optical interactions are governed by both spin and angular momentum conservation laws, which serve as a tool for controlling light–matter interactions or elucidating electron dynamics and structure of complex systems. Here, we uncover a form of simultaneous spin and orbital angular momentum conservation and show, theoretically and experimentally, that this phenomenon allows for unprecedented control over the divergence and polarization of extreme-ultraviolet vortex beams. High harmonics with spin and orbital angular momenta are produced, opening a novel regime of angular momentum conservation that allows for manipulation of the polarization of attosecond pulses—from linear to circular—and for the generation of circularly polarized vortices with tailored orbital angular momentum, including harmonic vortices with the same topological charge as the driving laser beam. Our work paves the way to ultrafast studies of chiral systems using high-harmonic beams with designer spin and orbital angular momentum.The authors are thankful for useful and productive conversations with E. Pisanty, C. Durfee, D. Hickstein, S. Alperin and M. Siemens. H.C.K. and M.M.M. graciously acknowledge support from the Department of Energy BES Award No. DE-FG02–99ER14982 for the experimental implementation, as well as a MURI grant from the Air Force Office of Scientific Research under Award No. FA9550–16–1–0121 for the theory. J.L.E., N.J.B. and Q.L.N. acknowledge support from National Science Foundation Graduate Research Fellowships (Grant No. DGE-1144083). C.H.-G., J.S.R. and L.P. acknowledge support from Junta de Castilla y León (SA046U16) and Ministerio de Economía y Competitividad (FIS2013–44174-P, FIS2016–75652-P). C.H.-G. acknowledges support from a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. L.R. acknowledges support from Ministerio de Educación, Cultura y Deporte (FPU16/02591). A.P. acknowledges support from the Marie Sklodowska-Curie Grant, Agreement No. 702565. We thankfully acknowledge the computer resources at MareNostrum and the technical support provided by Barcelona Supercomputing Center (RES-AECT-2014–2–0085). This research made use of the high-performance computingresources of the Castilla y León Supercomputing Center (SCAYLE, www.scayle.es),financed by the European Regional Development Fund (ERDF). Certain commercial instruments are identified to specify the experimental study adequately. This does not imply endorsement by the National Institute of Standards and Technology (NIST) or that the instruments are the best available for the purpose
    corecore