7,213 research outputs found

    Influences of magnetic coupling process on the spectrum of a disk covered by the corona

    Full text link
    Recently, much attention has been paid to the magnetic coupling (MC) process, which is supported by very high emissivity indexes observed in Seyfert 1 galaxy MCG-6-30-15 and GBHC XTE J1650-500. But the rotational energy transferred from a black hole is simply assumed to be radiated away from the surrounding accretion disk in black-body spectrum, which is obviously not consistent with the observed hard power-law X-ray spectra. We intend to introduce corona into the MC model to make it more compatible with the observations. We describe the model and the procedure of a simplified Monte Carlo simulation, compare the output spectra in the cases with and without the MC effects, and discuss the influences of three parameters involved in the MC process on the output spectra. It is shown that the MC process augments radiation fluxes in the UV or X-ray band. The emergent spectrum is affected by the BH spin and magnetic field strength at the BH horizon, while it is almost unaffected by the radial profile of the magnetic field at the disk. Introducing corona into the MC model will improve the fitting of the output spectra from AGNs and GBHCs.Comment: 15 pages, 5 figures, accepted by A&

    Stochastic analysis of a heterogeneous micro-finite element model of a mouse tibia

    Get PDF
    Finite element (FE) analysis can be used to predict bone mechanical environments that can be used for many important applications, such as the understanding of bone mechano-regulation mechanisms. However, when defining the FE models, uncertainty in bone material properties may lead to marked variations in the predicted mechanical environment. The aim of this study is to investigate the influence of uncertainty in bone material property on the mechanical environment of bone. A heterogeneous FE model of a mouse tibia was created from micro computed tomography images. Axial compression loading was applied, and all possible bone density-modulus relationships were considered through stochastic analysis. The 1st and 3rd principal strains (ε and ε ) and the strain energy density (SED) were quantified in the tibial volume of interest (VOI). The bounds of ε , ε , and SED were determined by the bounds of the density-modulus relationship; the bone mechanical environment (ε , ε , and SED) and the bone density-modulus relationship exhibit the same trend of change; the relative percentage differences caused by bone material uncertainty are up to 28%, 28%, and 21% for ε , ε , and SED, respectively. These data provide guidelines on the adoption of bone density-modulus relationship in heterogeneous FE models. [Abstract copyright: Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

    Detecting Majorana fermions by use of superconductor-quantum Hall liquid junctions

    Full text link
    The point contact tunnel junctions between a one-dimensional topological superconductor and single-channel quantum Hall (QH) liquids are investigated theoretically with bosonization technology and renormalization group methods. For the ν=1\nu=1 integer QH liquid, the universal low-energy tunneling transport is governed by the perfect Andreev reflection fixed point with quantized zero-bias conductance G(0)=2e2/hG(0)=2e^{2}/h, which can serve as a definitive fingerprint of the existence of a Majorana fermion. For the ν=1/m\nu =1/m Laughlin fractional QH liquids, its transport is governed by the perfect normal reflection fixed point with vanishing zero-bias conductance and bias-dependent conductance G(V)Vm2G(V) \sim V^{m-2}. Our setup is within reach of present experimental techniques.Comment: 6 pages, 1 figure, Added references,Corrected typo

    Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements

    Full text link
    Accurate high-energy electron diffraction measurements of structure factors of NiO have been carried out to investigate how strong correlations in the Ni 3d shell affect electron charge density in the interior area of nickel ions and whether the new ab-initio approaches to the electronic structure of strongly correlated metal oxides are in accord with experimental observations. The generalized gradient approximation (GGA) and the local spin density approximation corrected by the Hubbard U term (LSDA+U) are found to provide the closest match to experimental measurements. The comparison of calculated and observed electron charge densities shows that correlations in the Ni 3d shell suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma

    Performance of pilot-scale microbial fuel cells treating wastewater with associated bioenergy production in the Caribbean context

    Get PDF
    Microbial fuel cell (MFC) technology represents a form of renewable energy that generates bioelectricity from what would otherwise be considered a waste stream. MFCs may be ideally suited to the small island developing state (SIDS) context, such as Trinidad and Tobago where seawater as the main electrolyte is readily available and economical renewable and sustainable electricity is also deemed a priority. Hence this project tested two identical laboratory-scaled MFC systems that were specifically designed and developed for the Caribbean regional context. They consisted of two separate chambers, an anaerobic anodic chamber inoculated with wastewater and an aerobic cathodic chamber separated by a proton exchange membrane. Domestic wastewater from two various wastewater treatment plants inflow (after screening) was placed into the anodic chamber, and seawater from the Atlantic Ocean and Gulf of Paria placed into the cathodic chambers respectively with the bacteria present in the wastewater attaching to the anode. Experimental results demonstrated that the bacterial degradation of the wastewaters as substrate induced an electron flow through the electrodes producing bioelectricity whilst simultaneously reducing the organic matter as biochemical oxygen demand and chemical oxygen demand by 30 to 75%. The average bioenergy output for both systems was 84 mW/m² and 96 mW/m² respectively. This study demonstrated the potential for simultaneous bioenergy production and wastewater treatment in the SIDS context

    Simulation of microstructure evolution during extrusion of large depth-to-diameter ratio variable cross-section hollow shafts of 6061 aluminum alloy

    Get PDF
    The hollow slender shaft is characterized by intricate component features such as a significant depth-to-diameter ratio, variable cross-sections, and non-uniform thin walls. Uneven deformation of the hollow slender shaft during deformation results in degradation of service performance. In this study, the deformation uniformity is explored from a microscopic point of view, the numerical simulation model of dynamic recrystallization of 6061 aluminum alloy is established with the DEFORM-3D software. And grain evolution during the aluminum alloy extrusion process was theoretically analyzed using the cellular automata
    corecore