6 research outputs found
Ecology and evolution of Mycobacterium tuberculosis
Tuberculosis (TB) is the number one cause of human death due to an infectious disease. The causative agents of TB are a group of closely related bacteria known as the Mycobacterium tuberculosis complex (MTBC). As the MTBC exhibits a clonal population structure with low DNA sequence diversity, methods (such as multilocus sequence typing) that are applied to more genetically diverse bacteria are uninformative, and much of the ecology and evolution of the MTBC has therefore remained unknown. Owing to recent advances in whole-genome sequencing and analyses of large collections of MTBC clinical isolates from around the world, many new insights have been gained, including a better understanding of the origin of the MTBC as an obligate pathogen and its molecular evolution and population genetic characteristics both within and between hosts, as well as many aspects related to antibiotic resistance. The purpose of this Review is to summarize these recent discoveries and discuss their relevance for developing better tools and strategies to control TB