6 research outputs found

    Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae

    Get PDF
    There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits

    Evolution of the SPATULA/ALCATRAZ gene lineage and expression analyses in the basal eudicot, Bocconia frutescens L. (Papaveraceae)

    Get PDF
    Abstract Background SPATULA (SPT) and ALCATRAZ (ALC) are recent paralogs that belong to the large bHLH transcription factor family. Orthologs of these genes have been found in all core eudicots, whereas pre-duplication genes, named paleoSPATULA/ALCATRAZ, have been found in basal eudicots, monocots, basal angiosperms and gymnosperms. Nevertheless, functional studies have only been performed in Arabidopsis thaliana, where SPT and ALC are partially redundant in carpel and valve margin development and ALC has a unique role in the dehiscence zone. Further analyses of pre-duplication genes are necessary to assess the functional evolution of this gene lineage. Results We isolated additional paleoSPT/ALC genes from Aristolochia fimbriata, Bocconia frutescens, Cattleya trianae and Hypoxis decumbens from our transcriptome libraries and performed phylogenetic analyses. We identified the previously described bHLH domain in all analyzed sequences and also new conserved motifs using the MEME suite. Finally, we analyzed the expression of three paleoSPT/ALC genes (BofrSPT1/2/3) from Bocconia frutescens, a basal eudicot in the Papaveraceae. To determine the developmental stages at which these genes were expressed, pre- and post-anthesis carpels and fruits of B. frutescens were collected, sectioned, stained, and examined using light microscopy. Using in situ hybridization we detected that BofrSPT1/2/3 genes are expressed in floral buds, early sepal initiation, stamens and carpel primordia and later during fruit development in the dehiscence zone of the opercular fruit. Conclusions Our expression results, in comparison with those available for core eudicots, suggest conserved roles of members of the SPT/ALC gene lineage across eudicots in the specification of carpel margins and the dehiscence zone of the mature fruits. Although there is some redundancy between ALC and SPT, these gene clades seem to have undergone some degree of sub-functionalization in the core eudicots, likely by changes in cis regulatory regions and to some extent in coding sequences, at least in Brassicaceae. Our results also indicate that in Bocconia frutescens, paleoSPT/ALC genes may play a role in early floral organ specification that was subsequently lost in core eudicot lineages

    Dynamic genome evolution in a model fern

    Get PDF
    The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology

    The Evolution of the KANADI Gene Family and Leaf Development in Lycophytes and Ferns

    No full text
    Leaves constitute the main photosynthetic plant organ and even though their importance is not debated, the origin and development of leaves still is. The leaf developmental network has been elucidated for angiosperms, from genes controlling leaf initiation, to leaf polarity and shape. There are four KANADI (KAN) paralogs in Arabidopsis thaliana needed for organ polarity with KAN1 and KAN2 specifying abaxial leaf identity. Yet, studies of this gene lineage outside angiosperms are required to better understand the evolutionary patterns of leaf development and the role of KAN homologs. We studied the evolution of KAN genes across vascular plants and their expression by in situ hybridization in the fern, Equisetum hyemale and the lycophyte Selaginella moellendorffii. Our results show that the expression of KAN genes in leaves is similar between ferns and angiosperms. However, the expression patterns observed in the lycophyte S. moellendorffii are significantly different compared to all other vascular plants, suggesting that the KAN function in leaf polarity is likely only conserved across ferns, gymnosperms, and angiosperms. This study indicates that mechanisms for leaf development are different in lycophytes compared to other vascular plants

    Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in Citrus

    No full text
    Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit “hesperidium” is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement
    corecore