60 research outputs found

    Real-Time PCR in faecal samples of Triatoma infestans obtained by xenodiagnosis: proposal for an exogenous internal control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polymerase chain reaction (PCR) has proved to be a sensitive technique to detect <it>Trypanosoma cruzi </it>in the chronic phase of Chagas disease, which is characterized by low and fluctuating parasitemia. Another technique proposed for parasitological diagnosis in this phase of infection combines a microscopic search for motile trypomastigote forms in faecal samples (FS) obtained by xenodiagnosis (XD) with conventional PCR (XD-PCR). In this study we evaluate the use of human blood DNA as an exogenous internal control (EIC) for real time PCR (qPCR) combined with XD (XD-qPCR) using chromosome 12 (X12) detection.</p> <p>Findings</p> <p>None of the FS-XD evaluated by qPCR amplified for X12. Nevertheless, all the EIC-FS-XD mixtures amplified for X12.</p> <p>Conclusions</p> <p>We determined that X12 is useful as an EIC for XD-qPCR because we showed that the FS-XD does not contain human DNA after 30 or more days of XD incubation. This information is relevant for research on <it>T. cruzi </it>by XD-qPCR since it allows ruling out inhibition and false negative results due to DNA loss during the process of extraction and purification.</p

    International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients

    Get PDF
    A century after its discovery, Chagas disease, caused by the parasite Trypanosoma cruzi, still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The polymerase chain reaction (PCR) has been proposed as a sensitive laboratory tool for detection of T. cruzi infection and monitoring of parasitological treatment outcome. However, high variation in accuracy and lack of international quality controls has precluded reliable applications in the clinical practice and comparisons of data among cohorts and geographical regions. In an effort towards harmonization of PCR strategies, 26 expert laboratories from 16 countries evaluated their current PCR procedures against sets of control samples, composed by serial dilutions of T.cruzi DNA from culture stocks belonging to different lineages, human blood spiked with parasite cells and blood samples from Chagas disease patients. A high variability in sensitivities and specificities was found among the 48 reported PCR tests. Out of them, four tests with best performance were selected and further evaluated. This study represents a crucial first step towards device of a standardized operative procedure for T. cruzi PCR.Fil: Schijman, Alejandro G. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Bisio, Margarita. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Orellana, Liliana. Universidad de Buenos Aires. Instituto de CĂĄlculo; Argentina.Fil: Sued, Mariela. Universidad de Buenos Aires. Instituto de CĂĄlculo; Argentina.Fil: Duffy, TomĂĄs. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Mejia Jaramillo, Ana M. Universidad de Antioquia. Grupo Chagas; Colombia.Fil: Cura, Carolina. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular (INGEBI-CONICET). Laboratorio de BiologĂ­a Molecular de la Enfermedad de Chagas (LabMECh); Argentina.Fil: Auter, Frederic. French Blood Services; Francia.Fil: Veron, Vincent. Universidad de ParasitologĂ­a. Laboratorio Hospitalario; Guayana Francesa.Fil: Qvarnstrom, Yvonne. Centers for Disease Control. Department of Parasitic Diseases; Estados Unidos.Fil: Deborggraeve, Stijn. Institute of Tropical Medicine; BĂ©lgica.Fil: Hijar, Gisely. Instituto Nacional de Salud; PerĂș.Fil: Zulantay, InĂ©s. Facultad de Medicina; Chile.Fil: Lucero, RaĂșl Horacio. Universidad Nacional del Nordeste; Argentina.Fil: VelĂĄzquez, Elsa. ANLIS Dr.C.G.MalbrĂĄn. Instituto Nacional de ParasitologĂ­a Dr. Mario Fatala Chaben; Argentina.Fil: Tellez, Tatiana. Universidad Mayor de San Simon. Centro Universitario de Medicina Tropical; Bolivia.Fil: Sanchez Leon, Zunilda. Universidad Nacional de AsunciĂłn. Instituto de Investigaciones en Ciencias de la Salud; Paraguay.Fil: GalvĂŁo, Lucia. Faculdade de FarmĂĄcia; Brasil.Fil: Nolder, Debbie. Hospital for Tropical Diseases. London School of Tropical Medicine and Hygiene Department of Clinical Parasitology; Reino Unido.Fil: Monje Rumi, MarĂ­a. Universidad Nacional de Salta. Laboratorio de PatologĂ­a Experimental; Argentina.Fil: Levi, JosĂ© E. Hospital Sirio LibanĂȘs. Blood Bank; Brasil.Fil: Ramirez, Juan D. Universidad de los Andes. Centro de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a Tropical; Colombia.Fil: Zorrilla, Pilar. Instituto Pasteur; Uruguay.Fil: Flores, MarĂ­a. Instituto de Salud Carlos III. Centro de Mahahonda; España.Fil: Jercic, Maria I. Instituto Nacional De Salud. SecciĂłn ParasitologĂ­a; Chile.Fil: Crisante, Gladys. Universidad de los Andes. Centro de Investigaciones ParasitolĂłgicas J.F. Torrealba; Venezuela.Fil: Añez, NĂ©stor. Universidad de los Andes. Centro de Investigaciones ParasitolĂłgicas J.F. Torrealba; Venezuela.Fil: De Castro, Ana M. Universidade Federal de GoiĂĄs. Instituto de Patologia Tropical e SaĂșde PĂșblica (IPTSP); Brasil.Fil: Gonzalez, Clara I. Universidad Industrial de Santander. Grupo de InmunologĂ­a y EpidemiologĂ­a Molecular (GIEM); Colombia.Fil: Acosta Viana, Karla. Universidad AutĂłnoma de YucatĂĄn. Departamento de Biomedicina de Enfermedades Infecciosas y Parasitarias Laboratorio de BiologĂ­a Celular; MĂ©xico.Fil: Yachelini, Pedro. Universidad CatĂłlica de Santiago del Estero. Instituto de Biomedicina; Argentina.Fil: Torrico, Faustino. Universidad Mayor de San Simon. Centro Universitario de Medicina Tropical; Bolivia.Fil: Robello, Carlos. Instituto Pasteur; Uruguay.Fil: Diosque, Patricio. Universidad Nacional de Salta. Laboratorio de PatologĂ­a Experimental; Argentina.Fil: Triana Chavez, Omar. Universidad de Antioquia. Grupo Chagas; Colombia.Fil: Aznar, Christine. Universidad de ParasitologĂ­a. Laboratorio Hospitalario; Guayana Francesa.Fil: Russomando, Graciela. Universidad Nacional de AsunciĂłn. Instituto de Investigaciones en Ciencias de la Salud; Paraguay.Fil: BĂŒscher, Philippe. Institute of Tropical Medicine; BĂ©lgica.Fil: Assal, Azzedine. French Blood Services; Francia.Fil: Guhl, Felipe. Universidad de los Andes. Centro de Investigaciones en MicrobiologĂ­a y ParasitologĂ­a Tropical; Colombia.Fil: Sosa Estani, Sergio. ANLIS Dr.C.G.MalbrĂĄn. Centro Nacional de DiagnĂłstico e InvestigaciĂłn en Endemo-Epidemias; Argentina.Fil: DaSilva, Alexandre. Centers for Disease Control. Department of Parasitic Diseases; Estados Unidos.Fil: Britto, Constança. Instituto Oswaldo Cruz/FIOCRUZ. LaboratĂłrio de Biologia Molecular e Doenças EndĂȘmicas; Brasil.Fil: Luquetti, Alejandro. LaboratĂłrio de Pesquisa de Doença de Chagas; Brasil.Fil: Ladzins, Janis. World Health Organization (WHO). Special Programme for Research and Training in Tropical Diseases (TDR); Suiza

    International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    Get PDF
    A century after its discovery, Chagas disease, caused by the parasite Trypanosoma cruzi, still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The polymerase chain reaction (PCR) has been proposed as a sensitive laboratory tool for detection of T. cruzi infection and monitoring of parasitological treatment outcome. However, high variation in accuracy and lack of international quality controls has precluded reliable applications in the clinical practice and comparisons of data among cohorts and geographical regions. In an effort towards harmonization of PCR strategies, 26 expert laboratories from 16 countries evaluated their current PCR procedures against sets of control samples, composed by serial dilutions of T.cruzi DNA from culture stocks belonging to different lineages, human blood spiked with parasite cells and blood samples from Chagas disease patients. A high variability in sensitivities and specificities was found among the 48 reported PCR tests. Out of them, four tests with best performance were selected and further evaluated. This study represents a crucial first step towards device of a standardized operative procedure for T. cruzi PCR

    Discrete Typing Units of Trypanosoma cruzi Identified by Real-Time PCR in Peripheral Blood and Dejections of Triatoma infestans Used in Xenodiagnosis Descriptive Study

    No full text
    Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host&ndash;parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution

    Estado actual en el tratamiento de la enfermedad de Chagas

    No full text

    Real-time PCR strategy for the identification of Trypanosoma cruzi discrete typing units directly in chronically infected human blood

    No full text
    © 2017 Elsevier B.V. The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a major public health problem in Latin America. This parasite has a complex population structure comprised by six or seven major evolutionary lineages (discrete typing units or DTUs) TcI-TcVI and TcBat, some of which have apparently resulted from ancient hybridization events. Because of the existence of significant biological differences between these lineages, strain characterization methods have been essential to study T. cruzi in its different vectors and hosts. However, available methods can be laborious and costly, limited in resolution or sensitivity. In this study, a new genotyping strategy by real-time PCR to identify each of the six DTUs in clinical blood samples have been developed and evaluated. Two nuclear (SL-IR and 18S rDNA) and two mitochondrial genes (COII and ND1) were selected to develop original primers. The method was evaluated with eight genomic DNA of T. cruzi populatio

    Acute fasciolosis: A clinical case Fasciolosis aguda: Caso clĂ­nico

    No full text
    Woman of 39 years of age from Talca province (VII Region) who presented intense abdominal pain which was interpreted as an acute abdomen, and an exploratory laparotomy was performed, wich was not concludent. After different procedures and tests the diagnosis of acute fasciolosis was achieved. She was treated with triclabendazole

    Detection of Trypanosoma cruzi by PCR in adults with chronic Chagas disease treated with nifurtimox.

    No full text
    Chagas disease, a vector-borne parasitosis caused by Trypanosoma cruzi, is endemic to Latin America and has spread to other countries due to immigration of infected persons. It is estimated that 160,000 people are infected in Chile, most of them in the chronic phase and without etiological treatment. The infection is confirmed by conventional serological methods while molecular methods have become in valuable tools to evaluate parasitemia in treated and non-treated chronic Chagas disease patients. The objective of this study was to determine, by conventional Polymerase Chain Reaction, the presence of T. cruzi kinetoplastid DNA in peripheral blood samples from 114 adult individuals with confirmed chronic Chagas disease, before and 6.6 years (average) after treatment with nifurtimox. The samples were received and preserved in guanidine-EDTA until DNA purification. Conventional PCR assays were performed in triplicate with T. cruzi kinetoplastid DNA primers 121 and 122. The amplified products were fractionated by electrophoresis in 2% agarose gels. A 330 bp product represented a positive assay. 84.2% (96 cases) and 6.1% (7 cases) of the samples taken before and after the treatment, respectively, were positive. The McNemar test showed a statistically significant difference between the groups of samples (p<0.001). Since serological negativization (the current cure criterion) delay many years after therapy and positive parasitological results represent a treatment failure, the conversion of pre-therapy positive conventional PCR is a qualitative and complementary tool that could be included in protocols of prolonged follow-up
    • 

    corecore