443 research outputs found

    From Cooperative Scans to Predictive Buffer Management

    Get PDF
    In analytical applications, database systems often need to sustain workloads with multiple concurrent scans hitting the same table. The Cooperative Scans (CScans) framework, which introduces an Active Buffer Manager (ABM) component into the database architecture, has been the most effective and elaborate response to this problem, and was initially developed in the X100 research prototype. We now report on the the experiences of integrating Cooperative Scans into its industrial-strength successor, the Vectorwise database product. During this implementation we invented a simpler optimization of concurrent scan buffer management, called Predictive Buffer Management (PBM). PBM is based on the observation that in a workload with long-running scans, the buffer manager has quite a bit of information on the workload in the immediate future, such that an approximation of the ideal OPT algorithm becomes feasible. In the evaluation on both synthetic benchmarks as well as a TPC-H throughput run we compare the benefits of naive buffer management (LRU) versus CScans, PBM and OPT; showing that PBM achieves benefits close to Cooperative Scans, while incurring much lower architectural impact.Comment: VLDB201

    Photon-bunching measurement after 2x25km of standard optical fibers

    Full text link
    To show the feasibility of a long distance partial Bell-State measurement, a Hong-Ou-Mandel experiment with coherent photons is reported. Pairs of degenerate photons at telecom wavelength are created by parametric down conversion in a periodically poled lithium niobate waveguide. The photon pairs are separated in a beam-splitter and transmitted via two fibers of 25km. The wave-packets are relatively delayed and recombined on a second beam-splitter, forming a large Mach-Zehnder interferometer. Coincidence counts between the photons at the two output modes are registered. The main challenge consists in the trade-off between low count rates due to narrow filtering and length fluctuations of the 25km long arms during the measurement. For balanced paths a Hong-Ou-Mandel dip with a visibility of 47.3% is observed, which is close to the maximal theoretical value of 50% developed here. This proves the practicability of a long distance Bell state measurement with two independent sources, as e.g. required in an entanglement swapping configuration in the scale of tens of km.Comment: 6 pages, 5 figure

    Volume One (Birgit Krohn Albums)

    Get PDF
    The first of Birgit Krohn\u27s three albums containing printed and manuscrip] music, much of which was likely collected during her time at Nikka Vonen\u27s school for girls in Dale, Norway.https://scholarexchange.furman.edu/krohn-album1/1000/thumbnail.jp

    Beam Splitter for Spin Waves in Quantum Spin Network

    Full text link
    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a YY-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.Comment: 5 pages, 4 figures, derivation of formulae change

    Flexible and efficient IR using array databases

    Get PDF
    textabstractThe Matrix Framework is a recent proposal by IR researchers to flexibly represent all important information retrieval models in a single multi-dimensional array framework. Computational support for exactly this framework is provided by the array database system SRAM (Sparse Relational Array Mapping) that works on top of a DBMS. Information retrieval models can be specified in its comprehension-based array query language, in a way that directly corresponds to the underlying mathematical formulas. SRAM efficiently stores sparse arrays in (compressed) relational tables and translates and optimizes array queries into relational queries. In this work, we describe a number of array query optimization rules and demonstrate their effect on text retrieval in the TREC TeraByte track (TREC-TB) efficiency task, using the Okapi BM25 model as our example. It turns out that these optimization rules enable SRAM to automatically translate the BM25 array queries into the relational equivalent of inverted list processing including compression, score materialization and quantization, such as employed by custom-built IR systems. The use of the high-performance MonetDB/X100 relational backend, that provides transparent database compression, allows the system to achieve very fast response times with good precision and low resource usage

    Surface properties of Me/Si structures prepared by means of self-ion assisted deposition.

    Get PDF
    In this paper a composite structure, topography, wettability and nanohardness of a (100) Si surface modified by means of ion-assisted deposition of metal (Me) coatings in conditions of a self-irradiation are discussed

    Experimental detection of entanglement via witness operators and local measurements

    Get PDF
    In this paper we address the problem of detection of entanglement using only few local measurements when some knowledge about the state is given. The idea is based on an optimized decomposition of witness operators into local operators. We discuss two possible ways of optimizing this local decomposition. We present several analytical results and estimates for optimized detection strategies for NPT states of 2x2 and NxM systems, entangled states in 3 qubit systems, and bound entangled states in 3x3 and 2x4 systems.Comment: 24 pages, 2 figures. Contribution to the proceedings of the International Conference on Quantum Information in Oviedo, Spain (July 13-18, 2002). Error in W_W1-witness Eq. (35) corrected as well as minor typos. Reference adde

    Nitrogen as Annihilation Centre for Point Defects in Implanted Silicon

    Get PDF
    The accumulation of radiation defects in silicon implanted with 150 keV N+ ions at high ion current density (20 A cm-2) and low density (0.05 A cm-2) was investigated by means of X-ray double-crystal spectrometer and EPR method. At high ion current density the radiation defects accumulate up to amorphization at the ion dose of 11015 cm-2. At low ion current density the curve of lattice parameter change on dose has oscillatory view and amorphization of the layer is not achieved at least up to ion dose of 1.41016 cm-2. The processes of the nitrogen atoms capture on the vacancy defects and Watkins displacement of them from the nodes work as additional channel of radiation defect annihilation. At high ion current densities and at high level of ionization in the implanted layer process of Watkins substitution is suppressed
    corecore