11 research outputs found

    Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China

    No full text
    This paper introduces a method to study the origin of geothermal water by analysis of hydrochemistry and isotopes. In addition, the genetic mechanism of geothermal water (GTW) is revealed. The study of the origin of geothermal water is useful for the sustainability of geothermal use. As an example, Tangquan is abundant in GTW resources. Elucidating the recharge sources and formation mechanism of the GTW in this area is vitally important for its scientific development. In this study, the GTW in Tangquan was systematically investigated using hydrochemical and isotopic geochemical analysis methods. The results show the following. The GTW and shallow cold water in the study area differ significantly in their hydrochemical compositions. The geothermal reservoir has a temperature ranging from 63 to 75 °C. The GTW circulates at depths of 1.8–2.3 km. The GTW is recharged by the infiltration of meteoric water at elevations of 321–539 m and has a circulation period of approximately 2046–6474 years. The GTW becomes mixed with the shallow cold karst water at a ratio of approximately 4–26% (cold water) during the upwelling process. In terms of the cause of its formation, the geothermal system in the study area is, according to analysis, of the low-medium-temperature convective type. This geothermal system is predominantly recharged by precipitation that falls in the outcropping carbonate area within the Laoshan complex anticline and is heated by the terrestrial heat flow in the area. The geothermal reservoir is composed primarily of Upper Sinian dolomite formations, and its caprock is made up of Cambrian, Cretaceous, and Quaternary formations. Through deep circulation, the GTW migrates upward along channels formed from the convergence of northeast–east- and north–west-trending faults and is mixed with the shallow cold water, leading to geothermal anomalies in the area

    Impacts of Urbanization on Variations of Extreme Precipitation over the Yangtze River Delta

    No full text
    The urbanization process is the hallmark of the population’s economic activities and land-use types, including population-, economic-, and landscape-urbanization. The question of how to classify the stations into urbanized and suburbanized stations is important for detecting the contribution rates of urbanization to precipitation extremes. This study used the fuzzy c-means clustering method to classify different urbanized level stations by population, economy, and impervious surface in the Suzhou-Wuxi-Changzhou urban agglomeration. Based on the change trends of six extreme precipitation indices, the contribution rates of urbanization to the precipitation extremes were estimated. The results show that the increasing indices were the intensity indices, while the decreasing indices were the duration indices during 1980–2015. Moreover, high urbanization tended to have a higher contribution to the most extreme precipitation indices, especially the intensity indices, than urbanization in the medium-size cities, indicating the urbanization leads to the phenomenon of extreme precipitation enhancement. The results of the three kinds of classification methods were different, especially the classification by the impervious area. This paper investigated the spatiotemporal changes in precipitation extremes and the contribution of urbanization to extreme precipitation, which will provide support for the development of urban agglomeration in the future

    Impacts of Urbanization on Variations of Extreme Precipitation over the Yangtze River Delta

    No full text
    The urbanization process is the hallmark of the population’s economic activities and land-use types, including population-, economic-, and landscape-urbanization. The question of how to classify the stations into urbanized and suburbanized stations is important for detecting the contribution rates of urbanization to precipitation extremes. This study used the fuzzy c-means clustering method to classify different urbanized level stations by population, economy, and impervious surface in the Suzhou-Wuxi-Changzhou urban agglomeration. Based on the change trends of six extreme precipitation indices, the contribution rates of urbanization to the precipitation extremes were estimated. The results show that the increasing indices were the intensity indices, while the decreasing indices were the duration indices during 1980–2015. Moreover, high urbanization tended to have a higher contribution to the most extreme precipitation indices, especially the intensity indices, than urbanization in the medium-size cities, indicating the urbanization leads to the phenomenon of extreme precipitation enhancement. The results of the three kinds of classification methods were different, especially the classification by the impervious area. This paper investigated the spatiotemporal changes in precipitation extremes and the contribution of urbanization to extreme precipitation, which will provide support for the development of urban agglomeration in the future

    Numerical Simulation of Artificial Recharge Groundwater Effect on Overlying Soft Clay Compression Control

    No full text
    Soil deformation is prone to occur in the process of the foundation pit dewatering. A large number of metro existing tunnels are located in soft soil layers. The compression of soft soil poses a threat to metro existing tunnels. Previously, plenty of research on foundation pit dewatering is focused on the hydraulic head and deformation characteristics of the aquifer. However, the law of water releasing and compression deformation of overlying soft soil has not been taken seriously. In order to study the artificial recharge groundwater effect on overlying soft clay, a three-dimensional seepage–soil deformation coupling numerical model was established. The theoretical basis of the model is Darcy’s law and the principle of effective stress. A foundation pit located in Nanjing, China was selected as an example. The numerical model was used to simulate the hydraulic head and soil deformation caused by foundation pit dewatering and artificial recharge groundwater outside. The result shows that, due to the difference of hydraulic head between the aquifer and the aquitard reducing, it also has a good control effect on the deformation of the soft soil by recharging water into the aquifer. The location of recharge wells around the metro existing tunnel can control the soil deformation effectively, which could help to reduce the impact on the metro existing tunnel

    A study of simulation and optimization of the production-reinjection scheme of a geothermal water system: A case study of the geothermal space heating demonstration area in northern Jiangsu countryside

    No full text
    During the process of developing and utilizing geothermal resources, various challenges are encountered. One such challenge is the decrease in temperature and pressure of the geothermal reservoir as a result of the increasing geothermal exploitation and duration. In addition, the discharge of geothermal tail water poses a risk of thermal pollution, leading to environmental concerns. To address these issues effectively, reinjection of geothermal fluids into the reservoir can be implemented as a viable solution. Prior to initiating the geothermal development and utilization, it is crucial to conduct scientifical and rational planning of the layout of production and reinjection wells. This involves exploring optimal strategies for the production-reinjection scheme that prevents the premature thermal breakthrough and maximize the efficient utilization of geothermal resources, thereby extending the lifespan of the geothermal reservoir. The Fengpei Basin, a Cenozoic rift basin that developed since the Paleogene period, exhibits a widespread distribution of geothermal reservoirs, primarily composed of the Ordovician limestone with karst and fracture characteristics. Building upon the geothermal resource exploration results in the Anguo Town in Peixian County in Jiangsu Province, this study utilizes key parameters obtained from pumping tests and reinjection experiments, such as well spacing and the reinjection-to-production ratio. This paper establishes a 3D coupled numerical model of geothermal water seepage and heat transfer by using the Feflow6.2 software. The recoverable reserves of geothermal fluid within the geothermal reservoir are simulated and predictd, specifically the Ordovician limestone formation. Furthermore, a simulated optimization of the development and utilization scheme for the production-reinjection wells is conducted. The results reveal that an appropriate well spacing of 389 m between the producing well (RPX01) and the reinjection well (RPX02) is recommended. Moreover, the reinjection-to-production ratio, namely the ratio of average aquifer hydraulic conductivity, is determined to be 1.29, supporting a sustainable approach of one-for-one pumping and reinjection. With a stabilized drawdown of 50.61 m, the production well has a capacity to recover 1000 m3/d of geothermal resources. Under the conditions of a production rate and a reinjection rate of 1000 m3/d, as well as a reinjection temperature of 40 °C, the simulation predicts a decrease in groundwater level by 45.49 m and a temperature reduction of 1.44 °C after ten heating seasons. This represents the optimal cyclic development and utilization scheme among the simulated scenarios. The above results provide a scientific basis for decision-making in the construction of the clean energy heating demonstration area in rural northern Jiangsu. They contribute to the establishment of a scientifically sound and sustainable approach for utilizing geothermal resources, while considering the challenges associated with the thermal breakthrough and the environmental impact of geothermal tail water discharge

    Safety and immunogenicity of CoronaVac in healthy adults: A prospective observational multicenter real-world study in Henan Province, China

    No full text
    Vaccination has emerged as the primar approach for managing the COVID-19 pandemic. Despite certain clinical trials reporting the safety and immunogenicity of CoronaVac, additional multicenter real-world studies are still necessary. In this study, we recruited 506 healthy volunteers who were not infected with COVID-19 or vaccinated. Each participant provided peripheral blood samples three times: prior to the first dose of vaccine, prior to the second dose, and 8 weeks following the second dose. Ultimately, 388 participants completed the entire follow-up process. No serious adverse events were observed among any of the participants. Within 1 week of vaccination, 13.4% of participants experienced systemic adverse reactions, with fatigue (5.93%) and dizziness (3.35%) being the most frequent. Although some clinical indicators, including creatinine, significantly changed after vaccination (p p < 0.05). Finally, a prediction model was developed based on age, monocytes, and alanine aminotransferase (ALT) with an AUC value of 87.56% in the train set and 80.71% in the test set. This study demonstrated that safety and immunogenicity of CoronaVac were good. The prediction model based on the baseline clinical characteristics prior to vaccination can help to develop more suitable vaccination strategies.</p
    corecore