81 research outputs found

    Temperature-driven evolution of hierarchical nanodomain structure in tetragonal-like BiFeO3 films

    Full text link
    Transmission electron microscopy study of tetragonal-like BiFeO3 films reveals a hitherto unreported hierarchical nanodomain structure. The 30-50 nm wide stripe domains with {110} domain walls consist of a substructure of lamellar nanodomains of 8-10 nm width in a herringbone-like arrangement. In situ heating and cooling reveals a reversible transition from the hierarchical nanodomain structure to a tweed-like domain structure which is accompanied by a first-order phase transition near 120 {\deg}C with a thermal hysteresis.Comment: accepted to Applied Physics Letters for publicatio

    Nanoscale domains in strained epitaxial BiFeO3 thin Films on LaSrAlO4 Substrate

    Full text link
    BiFeO3 thin films with various thicknesses were grown epitaxially on (001) LaSrAlO4 single crystal substrates using pulsed laser deposition. High resolution x-ray diffraction measurements revealed that a tetragonal-like phase with c-lattice constant ~4.65 {\AA} is stabilized by a large misfit strain. Besides, a rhombohedral-like phase with c-lattice constant ~3.99 {\AA} was also detected at film thickness of ~50 nm and above to relieve large misfit strains. In-plane piezoelectric force microscopy studies showed clear signals and self-assembled nanoscale stripe domain structure for the tetragonal-like regions. These findings suggest a complex picture of nanoscale domain patterns in BiFeO3 thin films subjected to large compressive strains.Comment: 14 pages, 4 figure

    Hexagonal close-packed polar-skyrmion lattice in ultrathin ferroelectric PbTiO3 films

    Full text link
    Polar skyrmions are topologically stable, swirling polarization textures with particle-like characteristics, which hold promise for next-generation, nanoscale logic and memory. While understanding of how to create ordered polar skyrmion lattice structures and how such structure respond to applied electric fields, temperature, and film thickness remains elusive. Here, using phase-field simulations, the evolution of polar topology and the emergence of a phase transition to a hexagonal close-packed skyrmion lattice is explored through the construction of a temperature-electric field phase diagram for ultrathin ferroelectric PbTiO3 films. The hexagonal-lattice skyrmion crystal can be stabilized under application of an external, out-of-plane electric field which carefully adjusts the delicate interplay of elastic, electrostatic, and gradient energies. In addition, the lattice constants of the polar skyrmion crystals are found to increase with film thickness, consistent with expectation from Kittel law. Our studies pave the way for the development of novel ordered condensed matter phases assembled from topological polar textures and related emergent properties in nanoscale ferroelectrics.Comment: 4 Figure

    Atomic-scale control of magnetic anisotropy via novel spin-orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices

    Full text link
    Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e. magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry. Extrinsic control over the MA is usually achieved by introducing shape anisotropy or exchange bias from another magnetically ordered material. Here we demonstrate a pathway to manipulate MA of 3d transition metal oxides (TMOs) by digitally inserting non-magnetic 5d TMOs with pronounced spin-orbit coupling (SOC). High quality superlattices comprised of ferromagnetic La2/3Sr1/3MnO3 (LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control of thickness at atomic scale. Magnetic easy axis reorientation is observed by controlling the dimensionality of SIO, mediated through the emergence of a novel spin-orbit state within the nominally paramagnetic SIO.Comment: Proceedings of the National Academy of Sciences, May 201

    Coexistence of Ferroelectric Triclinic Phases and Origin of Large Piezoelectric Responses in Highly Strained BiFeO3 films

    Full text link
    The structural evolution of the strain-driven morphotropic phase boundary (MPB) in BiFeO3 films has been investigated using synchrotron x-ray diffractometry in conjunction with scanning probe microscopy. Our results demonstrate the existence of mixed-phase regions that are mainly made up of two heavily tilted ferroelectric triclinic phases. Analysis of first-principles computations suggests that these two triclinic phases originate from a phase separation of a single monoclinic state accompanied by elastic matching between the phase-separated states. These first-principle calculations further reveal that the intrinsic piezoelectric response of these two low-symmetry triclinic phases is not significantly large, which thus implies that the ease of phase transition between these two energetically close triclinic phases is likely responsible for the large piezoelectric response found in the BiFeO3 films near its MPB. These findings not only enrich the understandings of the lattice and domain structure of epitaxial BiFeO3 films but may also shed some light on the origin of enhanced piezoelectric response near MPB.Comment: 19 pages, 3 figures and 1 tabl
    corecore