69 research outputs found
An analytic study of errors made by Iraqi students in using English prepositions of place relation
Abstract p. xxvi-xxvi
ARTEMETHER LOADED ETHYLCELLULOSE NANOSUSPENSIONS: EFFECTS OF FORMULATION VARIABLES, PHYSICAL STABILITY AND DRUG RELEASE PROFILE
Objective: The aim of this study was to explore the individual and joint effects of drug: ethylcellulose ratio, content of tween 80 and chloroform: water volume ratio on particles' size and size distribution of artemether loaded ethyl cellulose nanosuspension formulations, aiming to achieve nanosuspension with desired particles properties, stability and drug release profile.Methods: Mixed levels design was used to generate a series of artemether loaded ethylcellulose nanosuspensions that produced by emulsification-solvent evaporation technique. Formulations were qualified for particle size and size distribution using dynamic light scattering technique. Best ranked formulation was then evaluated for stability and drug release rate and kinetics.Results: Drug: polymer ratio, content of surfactant and organic: water volume ratio were found to exert considerable influences (p<0.05) on particle size of produced nanosuspensions, either individually or as joint variables. Peak intensity property of nanosuspensions was found to be influenced by drug: polymer ratio (p<0.05) whereas the influences of different variables on the polydisperse index property appear inconsequential (p>0.05). Best ranked (optimal) artemether nanosuspension proved stable and capable to improve and maintain the release of loaded drug over 24 h, at least under the setting conditions of this study.Conclusion: Focusing on both the individual and joint influences of formulation variables assist in achieving nanosuspension with desired particles characteristics, stability and drug release profile
INFLUENCE OF DRUG SOLUBILITY AND POLYMERS SUPPLY SOURCE ON THE PHYSICAL PERFORMANCE OF MATRIX TABLETS
Objective: The aim of this study is to explore the possible effects of drug solubility and commercial supply sources of HPMC and PVP on physical properties of matrix tablets.
Methods: Two different supply sources (A and B) for Hydroxy Propyl Methyl Cellulose (HPMC) as matrix forming polymer and Polyvinyl Pyrrilidone (PVP) as matrix supportive polymer were used with either Chlorphenaramine maleate (CPM), as a water soluble drug or Atenolol (ATN), as a water insoluble drug, to produce a series of matrix formulations using direct compression according to a 23 full factorial design. Matrices were then qualified for friability, hardness, and drug release attributes.
Results: Matrix hardness and friability properties demonstrated to be influenced by PVP supply source as an individual factor alone or in combination with drug solubility factor, moreover, both properties were found to be less affected by drug solubility and HPMC supply source, as individual factors. Compared to other factors, drug solubility was found to have a substantial influence on drug dissolution efficiency (DE) and diffusion exponent of the drug release (n) of different matrices.
Conclusion: Variation in commercial PVP supply source and drug solubility could possibly result in matrices with different physical performance
Micellar effect upon the rate of alkaline hydrolysis of carboxylic and carbonate esters
AbstractThe alkaline hydrolysis of carboxylate (1-naphthylbutyrate) and carbonate esters (2-(methylsulfonyl)-ethyl-4-nitrophenylcarbonate) in the presence of different surfactants has been studied. The rate of hydrolysis of these esters was determined under pseudo first order condition in which the concentration of NaOH was kept in large excess over the [ester]. The cationic micelles of cetyltrimethylammonium bromide (CTABr) and cetyltrimethylammonium sulfate ((CTA)2SO4) enhanced the rate of hydrolysis of esters to a maximum value and thereafter, the increasing concentration of surfactant decreased the reaction rate. The anionic micelles of sodium dodecyl sulfate (SDS) inhibited the rate of the hydrolysis. The reaction proceeds through the attack of OH− ions on the carbonyl carbon forming tetrahedral intermediate. The tetrahedral intermediate is unstable and collapses immediately to yield respective acid and alcohol. The micelles influence the stability of tetrahedral intermediate, in turn, altering the rate of hydrolysis. The variation in the rate of hydrolysis by micelles was treated by considering the pseudophase ion-exchange model and Menger–Portnoy model. The added salts viz. NaBr, NaCl, and LiCl inhibited the rate of the reaction in the presence of cationic and anionic micelles. The kinetic parameters i.e. km and Ks were determined from the rate–[surfactant] profile
Effects of sand and gating architecture on the performance of foot valve lever casting components used in pump industries
Funding Information: The authors thank Kalasalingam Academy of Research and Education, Krishnankoil for providing the facilities for various tests and characterizations. The King Saud University authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RG-148. This Research was funded by King Mongkut's University of Technology North Bangkok has received funding support from the National Science, Research and Innovation Fund (NSRF) (Grant No. KMUTNB-MHESI-64-16.1). Publisher Copyright: © 2021 The Author(s)This work addresses manufacture, testing and simulation of foot valve lever (FVL) for monoblock pump industry, using a cost-effective casting design process. The impact of different types of sands, such as air-set, dry and sodium silicate as well as gating designs, namely H-, U- and O-type, were studied with respect to surface roughness and porosity. The mold pattern was produced using additive manufacturing (AM) technology. Both experimental and numerical investigations were performed on the temperature distribution of molten metal at random locations for the different gating configurations or designs, considering mold filling and solidification. It was evident from the experimental investigation that contribution of air-set sand and O-type gating architecture showed limited consistency effects. Importantly, gating architecture was the most influential parameter to determine all specified quality outcomes, independent of sand mold. An order of O < H < U-type was obtained from the gating designs for minimal surface roughness and percentage of porosity. Furthermore, the microstructure analysis depicted only an irregular defect with minimum quantity at both surface and cross-section of O-type at two different locations. Optimum pouring temperatures of 740, 750 and 790 °C were obtained for mold filling of all 24 components of H-, O- and U-type of gating designs, respectively. The varying solidification temperature was observed from real time thermocouple reading, which was in close agreement with the numerical simulation. Evidently, O-type of gating design exhibited best performance for large-scale development of the FVL in terms of surface roughness, porosity and cooling effects.Peer reviewe
Studies of hepatic synthesis in vivo of plasma proteins, including orosomucoid, transferrin, α-antitrypsin, C8, and factor B
Serum protein types were determined in eight recipients and donors in cases of hepatic homotransplantation. A change from recipient type to donor type was observed for factor B, C8, orosomucoid, haptoglobin, transferrin, α1-antitrypsin, C3 and C6, but not for Gm and Inv immunoglobulin markers. The results indicate that all the proteins studied (except immunoglobulins) are produced primarily by the liver in vivo. © 1980
Recommended from our members
Genetic fixity in the human major histocompatibility complex and block size diversity in the class I region including HLA-E
BACKGROUND: The definition of human MHC class I haplotypes through association of HLA-A, HLA-Cw and HLA-B has been used to analyze ethnicity, population migrations and disease association. RESULTS: Here, we present HLA-E allele haplotype association and population linkage disequilibrium (LD) analysis within the ~1.3 Mb bounded by HLA-B/Cw and HLA-A to increase the resolution of identified class I haplotypes. Through local breakdown of LD, we inferred ancestral recombination points both upstream and downstream of HLA-E contributing to alternative block structures within previously identified haplotypes. Through single nucleotide polymorphism (SNP) analysis of the MHC region, we also confirmed the essential genetic fixity, previously inferred by MHC allele analysis, of three conserved extended haplotypes (CEHs), and we demonstrated that commercially-available SNP analysis can be used in the MHC to help define CEHs and CEH fragments. CONCLUSION: We conclude that to generate high-resolution maps for relating MHC haplotypes to disease susceptibility, both SNP and MHC allele analysis must be conducted as complementary techniques
The Role of TNF-α in Mice with Type 1- and 2- Diabetes
Background: Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling. Methodology and Principal Findings: To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues. In PLNs and fat, TNF- interacted with 53% and 32% of genes, respectively, associated with reversal of diabetes by previous treatments and was thereby selected as a therapeutic target. Short-term anti-TNF- treatment ablated a T cell-rich islet-invasive and beta cell-destructive process, thereby enhancing beta cell viability. Indeed anti-TNF- treatment induces immune tolerance selective to syngeneic beta cells. In addition to these curative effects on T1D anti-TNF-e33254 treatment restored in vivo insulin signaling resulting in restoration of insulin sensitivity. Conclusions: In short, our molecular analysis suggested that PM and AAT both may act in part by quenching a detrimental TNF- dependent effect in both fat and PLNs. Indeed, short-term anti-TNF- mAb treatment restored enduring euglycemia, self-tolerance, and normal insulin signaling
Obesity is associated with insulin resistance and components of the metabolic syndrome in Lebanese adolescents
adolescents has been reported to range between 18–42%, depending on country of origin, thus suggesting an ethnicbased association between obesity and MS. Aim: This study aims to investigate the magnitude of the association between obesity, insulin resistance and components of MS among adolescents in Lebanon. Subjects and methods: The sample included 263 adolescents at 4 th and 5 th Tanner stages of puberty (104 obese; 78 overweight; 81 normal weight). Anthropometric, biochemical and blood pressure measurements were performed. Body fat was assessed using dual-energy X-ray absorptiometry. Results: According to International Diabetes Federation criteria, MS was identified in 21.2 % of obese, 3.8 % of overweight and 1.2 % of normal weight subjects. The most common metabolic abnormalities among subjects having MS were elevated waist circumference (96.2%), low HDL (96.2%) and hypertriglyceridemia (73.1%). Insulin resistance was identified in all subjects having MS. Regression analyses showed that percentage body fat, waist circumference and BMI were similar in their ability to predict the MS in this age group. Conclusions: MSwas identified in asubstantial proportion of Lebanese obese adolescents, thus highlighting the importance of early screening for obesity-associated metabolic abnormalities and of developing successful multi-component interventions addressing adolescent obesity
- …