54 research outputs found

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Get PDF
    Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women’s worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequal-ity acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women’s brains and provide initial evidence for neuroscience-informed policies for gender equality

    Mega-analysis methods in ENIGMA : the experience of the generalized anxiety disorder working group

    Get PDF
    The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses

    Impacto de estresse na infância na psicopatologia

    Get PDF
    OBJECTIVE: Advances in our knowledge of mental disorder (MD) genetics have contributed to a better understanding of their pathophysiology. Nonetheless, several questions and doubts persist. Recent studies have focused on environmental influences in the development of MDs, and the advent of neuroscientific methodologies has provided new perspectives. Early life events, such as childhood stress, may affect neurodevelopment through mechanisms such as gene-environment interactions and epigenetic regulation, thus leading to diseases in adulthood. The aim of this paper is to review the evidence regarding the role of the environment, particularly childhood stress, in the pathophysiology of MD. METHODOLOGY: We reviewed articles that evaluated environmental influences, with a particular focus on childhood trauma, brain morphology, cognitive functions, and the development of psychopathology and MD. RESULTS AND CONCLUSION: MRI studies have shown that exposure to trauma at an early age can result in several neurostructural changes, such as the reduction of the hippocampus and corpus callosum. Cognitive performance and functioning are also altered in this population. Finally, childhood stress is related to an increased risk of developing MD such as depression, bipolar disorder, schizophrenia and substance abuse. We conclude that there is robust evidence of the role of the environment, specifically adverse childhood experiences, in various aspects of MD.OBJETIVO: Avanços no conhecimento da genética dos transtornos mentais (TM) contribuíram para um melhor entendimento de suas bases fisiopatológicas. No entanto, dúvidas e questões ainda persistem. Estudos recentes têm se concentrado nas influências do ambiente no desenvolvimento de TM, e o advento de metodologias neurocientíficas oferece novas perspectivas. Eventos precoces de vida, como estresse na infância, podem ser capazes de alterar o neurodesenvolvimento através de mecanismos como interação gene-ambiente e regulação epigenética, resultando em patologias na idade adulta. O objetivo deste artigo é revisar as evidências referentes ao papel do ambiente, em especial o estresse na infância, na fisiopatologia de TM. METODOLOGIA: Revisamos artigos que avaliam as influências ambientais, com um foco especial no trauma na infância, na morfologia cerebral, nas funções cognitivas e no desenvolvimento de psicopatologias e TM. RESULTADOS E CONCLUSÃO: Estudos com ressonância magnética demonstram que a exposição a traumas em uma idade precoce pode levar a diversas alterações neuroestruturais, como a diminuição do hipocampo e do corpo caloso. O desempenho e o funcionamento cognitivo também são alterados nessa população. Por fim, o estresse na infância está ligado a um maior risco de desenvolver TM como depressão, transtorno bipolar, esquizofrenia e abuso de substâncias. Concluímos que existem evidências sólidas quanto à importância do ambiente, especificamente das experiências adversas na infância, em diversos aspectos dos TM.Universidade Federal de São Paulo (UNIFESP) Department of Psychiatry Recognition and Intervention in Individuals in at-Risk Mental StatesUniversidade Federal de São Paulo (UNIFESP) Department of Psychiatry Interdisciplinary Laboratory of Clinical NeurosciencesUniversidade Federal do Rio Grande do Sul Laboratory of Molecular PsychiatryPontifícia Universidade Católica do Rio Grande do Sul Nucleus of Studies and Research in Trauma and StressUNIFESP, Department of Psychiatry Recognition and Intervention in Individuals in at-Risk Mental StatesUNIFESP, Department of Psychiatry Interdisciplinary Laboratory of Clinical NeurosciencesSciEL

    Country-level gender inequality is associated with structural differences in the brains of women and men

    Get PDF
    Significance Gender inequality is associated with worse mental health and academic achievement in women. Using a dataset of 7,876 MRI scans from healthy adults living in 29 different countries, we here show that gender inequality is associated with differences between the brains of men and women: cortical thickness of the right hemisphere, especially in limbic regions such as the right caudal anterior cingulate and right medial orbitofrontal, as well as the left lateral occipital, present thinner cortices in women compared to men only in gender-unequal countries. These results suggest a potential neural mechanism underlying the worse outcome of women in gender-unequal settings, as well as highlight the role of the environment in the brain differences between women and men. Abstract Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women’s worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women’s brains and provide initial evidence for neuroscience-informed policies for gender equality

    Connectome hubs at resting state in children and adolescents:reproducibility and psychopathological correlation

    Get PDF
    AbstractFunctional brain hubs are key integrative regions in brain networks. Recently, brain hubs identified through resting-state fMRI have emerged as interesting targets to increase understanding of the relationships between large-scale functional networks and psychopathology. However, few studies have directly addressed the replicability and consistency of the hub regions identified and their association with symptoms. Here, we used the eigenvector centrality (EVC) measure obtained from graph analysis of two large, independent population-based samples of children and adolescents (7–15 years old; total N=652; 341 subjects for site 1 and 311 for site 2) to evaluate the replicability of hub identification. Subsequently, we tested the association between replicable hub regions and psychiatric symptoms. We identified a set of hubs consisting of the anterior medial prefrontal cortex and inferior parietal lobule/intraparietal sulcus (IPL/IPS). Moreover, lower EVC values in the right IPS were associated with psychiatric symptoms in both samples. Thus, low centrality of the IPS was a replicable sign of potential vulnerability to mental disorders in children. The identification of critical and replicable hubs in functional cortical networks in children and adolescents can foster understanding of the mechanisms underlying mental disorders

    Obsessive-compulsive symptoms, polygenic risk score, and thalamic development in children from the Brazilian High-Risk Cohort for Mental Conditions (BHRCS)

    Get PDF
    Background: Thalamic volume measures have been linked to obsessive-compulsive disorder (OCD) in children and adolescents. However, it is unclear if alterations in thalamic volumes occur before or after symptom onset and if there is a relation to the presence of sub-clinical obsessive-compulsive symptoms (OCS). Here, we explore the relationship between OCS and the rate of thalamic volume change in a cohort of children and youth at high risk to develop a mental disorder. A secondary aim was to determine if there is a relationship between OCS and the individual’s OCD polygenic risk score (OCD-PRS) and between the rate of thalamic volume change and the OCD-PRS. Methods: The sample included 378 children enrolled in the longitudinal Brazilian High-Risk Cohort for Mental Conditions. Participants were assessed for OCS and the symmetrized percent change (SPC) of thalamic volume across two time-points separated by 3 years, along with the OCD-PRS. Zero-altered negative binomial models were used to analyze the relationship between OCS and thalamic SPC. Multiple linear regressions were used to examine the relationship between thalamic SPC and OCD-PRS. Results: A significant relationship between OCS and the right thalamus SPC (p = 0.042) was found. There was no significant relationship between changes in thalamic volume SPC and OCD-PRS. Conclusions: The findings suggest that changes in the right thalamic volume over the course of 3 years in children may be associated to OCS. Future studies are needed to confirm these results and further characterize the specific nature of OCS symptoms associated with thalamic volumes
    corecore