36 research outputs found
Enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs
superlattices grown by low-temperature molecular beam epitaxy, which is due to
thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced
increase of the Curie temperature is strongly correlated to the In
concentration in the embedded layers. Curie temperatures up to 110 K are
observed in such structures compared to 60 K in GaMnAs single layers grown
under the same conditions. A further increase in T up to 130 K can be
achieved using post-growth annealing at temperatures near the growth
temperature. Pronounced thickness fringes in the high resolution X-ray
diffraction spectra indicate good crystalline quality and sharp interfaces in
the structures.Comment: 4 pages, 4 figures, submitted to Appl. Phys. Let
Electronic and magnetic properties of GaMnAs: Annealing effects
The effect of short-time and long-time annealing at 250C on the conductivity,
hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs
heterostructures is studied by in-situ conductivity measurements as well as
Raman and SQUID measurements before and after annealing. Whereas the
conductivity monotonously increases with increasing annealing time, the hole
density and the Curie temperature show a saturation after annealing for 30
minutes. The incorporation of thin InGaMnAs layers drastically enhances the
Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica
High-quality lowest-frequency normal mode strain observations at the Black Forest Observatory (SW-Germany) and comparison with horizontal broad-band seismometer data and synthetics
We present spectra concentrating on the lowest-frequency normal modes of the Earth obtained from records of the invar-wire strainmeters and STS-1 broad-band seismometers located in the Black Forest Observatory, Germany after the disastrous earthquakes off the NW coast of Sumatra in 2004 and off the coast near Tohoku, Japan in 2011. We compare the spectra to ones obtained from synthetic seismograms computed using a mode summation technique for an anelastic, elliptical, rotating, spherically symmetric Earth model. The synthetics include strain–strain-coupling effects by using coupling coefficients obtained from comparisons between Earth tide signals recorded by the strainmeters and synthetic tidal records. We show that for the low-frequency toroidal and spheroidal modes up to 1 mHz, the strainmeters produce better signal-to-noise ratios than the broad-band horizontal seismometers. Overall, the comparison with the synthetics is satisfactory but not as good as for vertical accelerations. In particular, we demonstrate the high quality of the strainmeter data by showing the Coriolis splitting of toroidal modes for the first time in individual records, the first clear observation of the singlet 2S0/1 and the detection of the fundamental radial mode 0S0 with good signal-to-noise ratio and with a strain amplitude of 10^−11. We also identify the latter mode in a record of the Isabella strainmeter after the great Chilean quake in 1960, the detection of which was missed by the original studies
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
Curie temperature and carrier concentration gradients in MBE grown GaMnAs layers
We report on detailed investigations of the electronic and magnetic
properties of ferromagnetic GaMnAs layers, which have been fabricated by
low-temperature molecular-beam epitaxy. Superconducting quantum interference
device measurements reveal a decrease of the Curie temperature from the surface
to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly
shows a homogeneous Mn distribution, a pronounced decrease of the carrier
concentration from the surface towards the GaMnAs/GaAs interface has been found
by Raman spectroscopy as well as electrochemical capacitance-voltage profiling.
The gradient in Curie temperature seems to be a general feature of GaMnAs
layers grown at low-temperature. Possible explanations are discussed.Comment: 3 pages, 4 figures, submitted to AP
Amplification of B Cell Antigen Receptor Signaling by a Syk/ITAM Positive Feedback Loop
We have established a protocol allowing transient and inducible coexpression of many foreign genes in Drosophila S2 Schneider cells. With this powerful approach of reverse genetics, we studied the interaction of the protein tyrosine kinases Syk and Lyn with the B cell antigen receptor (BCR). We find that Lyn phosphorylates only the first tyrosine whereas Syk phosphorylates both tyrosines of the BCR immunoreceptor tyrosine-based activation motif (ITAM). Furthermore, we show that Syk is a positive llosteric enzyme, which is strongly activated by the binding to the phosphorylated ITAM tyrosines, thus initiating a positive feedback loop at the receptor. The BCR-dependent Syk activation and signal amplification is efficiently counterbalanced by protein tyrosine phosphatases, the activity of which is regulated by Hâ‚‚Oâ‚‚ and the redox equilibrium inside the cell