52 research outputs found
High-temperature microphone system
Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus
Differential sound level meter
Small differences between relatively high sound pressure levels at two different microphone sites are measured by a device which provides electrical insertion voltages (pilot voltages) as a a means for continuously monitoring the gains of two acoustical channels. The difference between two pilot voltages is utilized to force the gain of one channel to track the other channel
Acoustic ground impedance meter
A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained
Instrumentation for measuring aircraft noise and sonic boom
Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability
Flow Resistivity Instrument
A method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface is summarized. The novel feature of the invention is two concentric cylinders, inserted into the ground surface with a measured pressure applied to the surface inside the inner cylinder. The outer cylinder vents a plane beneath the surface to the atmosphere through an air space. The flow to the inner cylinder is measured thereby indicating the flow from the surface to the plane beneath the surface
A high-temperature wideband pressure transducer
The problem of operating a condenser microphone as a terminal element of a half wavelength transmission line was dealt with; the environment in which the microphone operates necessitates a 25 foot separation from its supporting electronics. A theoretical analysis of the microphone-cable system, substantiated by laboratory tests, provided criteria to optimize system gain
Preliminary study of gaseous nitrogen-liquid oxygen mixing and self cleaning
The penetration of gaseous nitrogen into liquid oxygen at a pressure of 150 psi was determined by monitoring the composition of the evaporating liquid in a nitrogen analyzer. For pressurization times of about 1 hr the penetration depth varies between 0.0024 and 0.018 in. at an evaporation rate of about 1 gal/day. These are small compared to the penetration depth of 22.2 in. measured in the 7-inch high temperature tunnel at a pressure of 1500 psi, pressurization time of 5 min, and evaporation rate of 121 gal/day
Infrasonic emissions from local meteorological events: A summary of data taken throughout 1984
Records of infrasonic signals, propagating through the Earth's atmosphere in the frequency band 2 to 16 Hz, were gathered on a three microphone array at Langley Research Center throughout the year 1984. Digital processing of these records fulfilled three functions: time delay estimation, based on an adaptive filter; source location, determined from the time delay estimates; and source identification, based on spectral analysis. Meteorological support was provided by significant meteorological advisories, lightning locator plots, and daily reports from the Air Weather Service. The infrasonic data are organized into four characteristic signatures, one of which is believed to contain emissions from local meteorological sources. This class of signature prevailed only on those days when major global meteorological events appeared in or near to eastern United States. Eleven case histories are examined. Practical application of the infrasonic array in a low level wing shear alert system is discussed
Sound speed measurements in liquid oxygen-liquid nitrogen mixtures
The sound speed in liquid oxygen (LOX), liquid nitrogen (LN2), and five LOX-LN2 mixtures was measured by an ultrasonic pulse-echo technique at temperatures in the vicinity of -195.8C, the boiling point of N2 at a pressure of I atm. Under these conditions, the measurements yield the following relationship between sound speed in meters per second and LN2 content M in mole percent: c = 1009.05-1.8275M+0.0026507 M squared. The second speeds of 1009.05 m/sec plus or minus 0.25 percent for pure LOX and 852.8 m/sec plus or minus 0.32 percent for pure LN2 are compared with those reported by past investigators. Measurement of sound speed should prove an effective means for monitoring the contamination of LOX by Ln2
Proposed dynamic phase difference method for the detection of tile debonding from the space shuttle orbiter
A noncontracting, semi-global, dynamic technique was developed for detecting loose tiles on the space shuttle orbiter. In laboratory tests on a single tile, the substrate was excited into lateral motion at a constant frequency and amplitude of 2g. The phase relationship between the motions of tile and substrate was examined by noncontacting probes in order to relate the dynamic properties of the tile SIP system to its fatigue history; by a visual technique using a stroboscope and split screen video monitor for practical application in the field. When the substrate is excited at an appropriate frequency (between 30 and 60 Hz), a good tile moves in phase and a loose tile out of phase with the substrate. The out of phase motion is readily observable in the form of a "beat" between the tile and a reference marker on the substrate
- …