761 research outputs found

    Critical decay index at the onset of solar eruptions

    Get PDF
    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius RR undergoes an eruption when its axis reaches a location where the decay index d(lnBex)/d(lnR)-d(\ln B_{ex})/d(\ln R) of the ambient magnetic field BexB_{ex} is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope's internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric evolution of the active region or by the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a `critical range' [1.31.5] [1.3-1.5], rather than a `critical value' for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.Comment: 15 pages, 9 figures. To appear in The Astrophysical Journa

    Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    Full text link
    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, an X1.1-class flare SOL2012-03-05T03:20 and a C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171\,\AA, 193\,\AA, or 211\,\AA~passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding/contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193\,\AA~appears to be close-by and co-temporal with an apparently imploding loop arcade seen in 171\,\AA. Later, the 193\,\AA~loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.Comment: The Astrophysical Journal, accepte

    Satellite observations of reconnection between emerging and pre-existing small-scale magnetic fields

    Get PDF
    We report multi-wavelength ultraviolet observations taken with the IRIS satellite, concerning the emergence phase in the upper chromosphere and transition region of an emerging flux region (EFR) embedded in the unipolar plage of active region NOAA 12529. The photospheric configuration of the EFR is analyzed in detail benefitting from measurements taken with the spectropolarimeter aboard the Hinode satellite, when the EFR was fully developed. In addition, these data are complemented by full-disk, simultaneous observations of the SDO satellite, relevant to the photosphere and the corona. In the photosphere, magnetic flux emergence signatures are recognized in the fuzzy granulation, with dark alignments between the emerging polarities, cospatial with highly inclined fields. In the upper atmospheric layers, we identify recurrent brightenings that resemble UV bursts, with counterparts in all coronal passbands. These occur at the edges of the EFR and in the region of the arch filament system (AFS) cospatial to the EFR. Jet activity is also found at chromospheric and coronal levels, near the AFS and the observed brightness enhancement sites. The analysis of the IRIS line profiles reveals the heating of dense plasma in the low solar atmosphere and the driving of bi-directional high-velocity flows with speeds up to 100 km/s at the same locations. Furthermore, we detect a correlation between the Doppler velocity and line width of the Si IV 1394 and 1402 \AA{} line profiles in the UV burst pixels and their skewness. Comparing these findings with previous observations and numerical models, we suggest evidence of several long-lasting, small-scale magnetic reconnection episodes between the emerging bipole and the ambient field. This process leads to the cancellation of a pre-existing photospheric flux concentration of the plage with the opposite polarity flux patch of the EFR. [...]Comment: 4 pages, 2 figures, to be published in "Nuovo Cimento C" as proceeding of the Third Meeting of the Italian Solar and Heliospheric Communit

    CFRP STRUCTURAL CAPACITORS: EFFECT OF DAMAGE AND MECHANICAL LOAD ON CAPACITANCE

    Get PDF
    Aim of this work is to study the effect of mechanical load and damages, on the performance of structural capacitors, made by CFRP composite laminates with a PET dielectric film (treated with sodium hydroxide) inserted at the laminate middle-plane. Such capacitors have been characterized by ILSS and tensile tests and the properties so estimated were compared to those of the simple CFRP. By measuring the capacitance before mechanical loading, under loading and after unloading, it has been observed that, due to the damage of the CFRP layers, proved also by proper fractographic analysis, at high strain level the capacitance decreases although it exhibits a complete recovery after unloading. Successive FEM analysis have been performed on structural capacitors to detect the interlaminar stress field and to implement a suitable criterion that can be used at the design stage to a reliable prediction of the failure load of such multifunctional CFRP composite materials

    Plasma flows and magnetic field interplay during the formation of a pore

    Get PDF
    We studied the formation of a pore in AR NOAA 11462. We analysed data obtained with the IBIS at the DST on April 17, 2012, consisting of full Stokes measurements of the Fe I 617.3 nm lines. Furthermore, we analysed SDO/HMI observations in the continuum and vector magnetograms derived from the Fe I 617.3 nm line data taken from April 15 to 19, 2012. We estimated the magnetic field strength and vector components and the LOS and horizontal motions in the photospheric region hosting the pore formation. We discuss our results in light of other observational studies and recent advances of numerical simulations. The pore formation occurs in less than 1 hour in the leading region of the AR. The evolution of the flux patch in the leading part of the AR is faster (< 12 hour) than the evolution (20-30 hour) of the more diffuse and smaller scale flux patches in the trailing region. During the pore formation, the ratio between magnetic and dark area decreases from 5 to 2. We observe strong downflows at the forming pore boundary and diverging proper motions of plasma in the vicinity of the evolving feature that are directed towards the forming pore. The average values and trends of the various quantities estimated in the AR are in agreement with results of former observational studies of steady pores and with their modelled counterparts, as seen in recent numerical simulations of a rising-tube process. The agreement with the outcomes of the numerical studies holds for both the signatures of the flux emergence process (e.g. appearance of small-scale mixed polarity patterns and elongated granules) and the evolution of the region. The processes driving the formation of the pore are identified with the emergence of a magnetic flux concentration and the subsequent reorganization of the emerged flux, by the combined effect of velocity and magnetic field, in and around the evolving structure.Comment: Accepted for publication in Astronomy and Astrophysic

    The 2013 February 17 sunquake in the context of the active region's magnetic field configuration

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake
    corecore