Eruptive solar flares were predicted to generate large-scale vortex flows at
both sides of the erupting magnetic flux rope. This process is analogous to a
well-known hydrodynamic process creating vortex rings. The vortices lead to
advection of closed coronal loops located at peripheries of the flaring active
region. Outward flows are expected in the upper part and returning flows in the
lower part of the vortex. Here, we examine two eruptive solar flares, an
X1.1-class flare SOL2012-03-05T03:20 and a C3.5-class SOL2013-06-19T07:29. In
both flares, we find that the coronal loops observed by the Atmospheric Imaging
Assembly in its 171\,\AA, 193\,\AA, or 211\,\AA~passbands show coexistence of
expanding and contracting motions, in accordance with the model prediction. In
the X-class flare, multiple expanding/contracting loops coexist for more than
35 minutes, while in the C-class flare, an expanding loop in 193\,\AA~appears
to be close-by and co-temporal with an apparently imploding loop arcade seen in
171\,\AA. Later, the 193\,\AA~loop also switches to contraction. These
observations are naturally explained by vortex flows present in a model of
eruptive solar flares.Comment: The Astrophysical Journal, accepte