205 research outputs found

    Reviewing, indicating, and counting books for modern research evaluation systems

    Get PDF
    In this chapter, we focus on the specialists who have helped to improve the conditions for book assessments in research evaluation exercises, with empirically based data and insights supporting their greater integration. Our review highlights the research carried out by four types of expert communities, referred to as the monitors, the subject classifiers, the indexers and the indicator constructionists. Many challenges lie ahead for scholars affiliated with these communities, particularly the latter three. By acknowledging their unique, yet interrelated roles, we show where the greatest potential is for both quantitative and qualitative indicator advancements in book-inclusive evaluation systems.Comment: Forthcoming in Glanzel, W., Moed, H.F., Schmoch U., Thelwall, M. (2018). Springer Handbook of Science and Technology Indicators. Springer Some corrections made in subsection 'Publisher prestige or quality

    A New Approach to Analyzing Patterns of Collaboration in Co-authorship Networks - Mesoscopic Analysis and Interpretation

    Full text link
    This paper focuses on methods to study patterns of collaboration in co-authorship networks at the mesoscopic level. We combine qualitative methods (participant interviews) with quantitative methods (network analysis) and demonstrate the application and value of our approach in a case study comparing three research fields in chemistry. A mesoscopic level of analysis means that in addition to the basic analytic unit of the individual researcher as node in a co-author network, we base our analysis on the observed modular structure of co-author networks. We interpret the clustering of authors into groups as bibliometric footprints of the basic collective units of knowledge production in a research specialty. We find two types of coauthor-linking patterns between author clusters that we interpret as representing two different forms of cooperative behavior, transfer-type connections due to career migrations or one-off services rendered, and stronger, dedicated inter-group collaboration. Hence the generic coauthor network of a research specialty can be understood as the overlay of two distinct types of cooperative networks between groups of authors publishing in a research specialty. We show how our analytic approach exposes field specific differences in the social organization of research.Comment: An earlier version of the paper was presented at ISSI 2009, 14-17 July, Rio de Janeiro, Brazil. Revised version accepted on 2 April 2010 for publication in Scientometrics. Removed part on node-role connectivity profile analysis after finding error in calculation and deciding to postpone analysis

    Increased sCD163 and sCD14 plasmatic levels and depletion of peripheral blood pro-inflammatory monocytes, myeloid and plasmacytoid dendritic cells in patients with severe COVID-19 pneumonia

    Get PDF
    Background: Emerging evidence argues that monocytes, circulating innate immune cells, are principal players in COVID-19 pneumonia. The study aimed to investigate the role of soluble (s)CD163 and sCD14 plasmatic levels in predicting disease severity and characterize peripheral blood monocytes and dendritic cells (DCs), in patients with COVID-19 pneumonia (COVID-19 subjects). Methods: On admission, in COVID-19 subjects sCD163 and sCD14 plasmatic levels, and peripheral blood monocyte and DC subsets were compared to healthy donors (HDs). According to clinical outcome, COVID-19 subjects were divided into ARDS and non-ARDS groups. Results: Compared to HDs, COVID-19 subjects showed higher sCD163 (p<0.0001) and sCD14 (p<0.0001) plasmatic levels. We observed higher sCD163 plasmatic levels in the ARDS group compared to the non-ARDS one (p=0.002). The cut-off for sCD163 plasmatic level greater than 2032 ng/ml was predictive of disease severity (AUC: 0.6786, p=0.0022; sensitivity 56.7% [CI: 44.1–68.4] specificity 73.8% [CI: 58.9–84.7]). Positive correlation between plasmatic levels of sCD163, LDH and IL-6 and between plasmatic levels of sCD14, D-dimer and ferritin were found. Compared to HDs, COVID-19 subjects showed lower percentages of non-classical (p=0.0012) and intermediate monocytes (p=0.0447), slanDCs (p<0.0001), myeloid DCs (mDCs, p<0.0001), and plasmacytoid DCs (pDCs, p=0.0014). Compared to the non-ARDS group, the ARDS group showed lower percentages of non-classical monocytes (p=0.0006), mDCs (p=0.0346), and pDCs (p=0.0492). Conclusions: The increase in sCD163 and sCD14 plasmatic levels, observed on hospital admission in COVID-19 subjects, especially in those who developed ARDS, and the correlations of these monocyte/macrophage activation markers with typical inflammatory markers of COVID-19 pneumonia, underline their potential use to assess the risk of progression of the disease. In an early stage of the disease, the assessment of sCD163 plasmatic levels could have clinical utility in predicting the severity of COVID-19 pneumonia

    Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population

    Get PDF
    Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10–4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases

    Effects of aging and life-long moderate calorie restriction on IL-15 signaling in the rat white adipose tissue

    Get PDF
    OBJECTIVE: Phosphorylation of insulin receptor substrate (IRS) 1 by tumor necrosis factor alpha (TNF-\u3b1) has been implicated as a factor contributing to insulin resistance. Administration of IL-15 reduces adipose tissue deposition in young rats and stimulates secretion of adiponectin, an insulin sensitizing hormone that inhibits the production and activity of TNF-a. We aimed at investigating the effects of age life-long moderate calorie restriction (CR) on IL-15 and TNF-\u3b1 signaling in rat white adipose tissue (WAT). MATERIALS AND METHODS: Thirty-six 8-month-old, 18-month-old, and 29-month-old male Fischer344 Brown Norway F1 rats (6 per group) were either fed ad libitum (AL) or calorie restricted by 40%. The serum levels of IL-15 and IL-15 receptor a-chain (IL-15Ra) were increased by CR controls regardless of age. An opposite pattern was detected in WAT. In addition, CR reduced gene expression of TNF-a and cytosolic IRS1 serine phosphorylation in WAT, independently from age. RESULTS: IL-15 signaling in WAT is increased over the course of aging in AL rats compared with CR rodents. Protein levels of IL-15Ra are greater in WAT of AL than in CR rats independently from age. This adaptation was paralleled by increased IRS1 phosphorylation through TNF-a-mediated insulin resistance. Adiponectin decreased at old age in AL rats, while no changes were evident in CR rats across age groups. CONCLUSIONS: IL-15 signaling could therefore represent a potential target for interventions to counteract metabolic alterations and the deterioration of body composition during aging

    Quality of t-cell response to SARS-CoV-2 mrrna vaccine in art-treated plwh

    Get PDF
    We investigated specific humoral and T-cell responses in people living with HIV (PLWH) before (T0), after two (T1) and after six months (T2) from the third dose of the BNT162b2 vaccine. Healthy donors (HD) were enrolled. The specific humoral response was present in most PLWH already after the second dose, but the third dose increased both the rate of response and its magnitude. Collectively, no significant differences were found in the percentage of responding T-cells between PLWH and HD. At T0, stratifying PLWH according to CD4 cell count, a lower percentage of responding T-cells in 200 cells/mu L one was observed. At T1, this parameter was comparable between the two subgroups, and the same result was found at T2. However, the pattern of co-expression of IFN gamma, IL2 and TNF alpha in PLWH was characterized by a higher expression of TNF alpha, independently of CD4 cell count, indicating a persistent immunological signature despite successful ART. mRNA vaccination elicited a specific response in most PLWH, although the cellular one seems qualitatively inferior compared to HD. Therefore, an understanding of the T-cell quality dynamic is needed to determine the best vaccination strategy and, in general, the capability of immune response in ART-treated PLWH

    Development and validation of a prediction model for tocilizumab failure in hospitalized patients with SARS-CoV-2 infection

    Get PDF
    Background The aim of this secondary analysis of the TESEO cohort is to identify, early in the course of treatment with tocilizumab, factors associated with the risk of progressing to mechanical ventilation and death and develop a risk score to estimate the risk of this outcome according to patients' profile. Methods Patients with COVID-19 severe pneumonia receiving standard of care + tocilizumab who were alive and free from mechanical ventilation at day 6 after treatment initiation were included in this retrospective, multicenter cohort study. Multivariable logistic regression models were built to identify predictors of mechanical ventilation or death by day-28 from treatment initiation and β-coefficients were used to develop a risk score. Secondary outcome was mortality. Patients with the same inclusion criteria as the derivation cohort from 3 independent hospitals were used as validation cohort. Results 266 patients treated with tocilizumab were included. By day 28 of hospital follow-up post treatment initiation, 40 (15%) underwent mechanical ventilation or died [26 (10%)]. At multivariable analysis, sex, day-4 PaO2/FiO2 ratio, platelets and CRP were independently associated with the risk of developing the study outcomes and were used to generate the proposed risk score. The accuracy of the score in AUC was 0.80 and 0.70 in internal validation and test for the composite endpoint and 0.92 and 0.69 for death, respectively. Conclusions Our score could assist clinicians in identifying, early after tocilizumab administration, patients who are likely to progress to mechanical ventilation or death, so that they could be selected for eventual rescue therapies
    • …
    corecore