49 research outputs found

    Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata

    Get PDF
    15 páginas, 4 figuras, 4 tablas.Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.This research was partly supported by the MCI project CGL2010-18466 and CoCoNet (FP7 Grant Agreement: 287844). R. C. is part of the Marine-Biogeochemistry and Global-Change-Research group from Generalitat de Catalunya.Peer reviewe

    Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics

    No full text
    9 pages, 6 figuresMediterranean benthic ecosystems have been deeply impacted by thermal anomalies during the last decades. Adaptive capacities for marine species facing climate change can include individual acclimatization (during the individual life-span) and genetic selection (considered at the population level). The Mediterranean red coral, Corallium rubrum, is well suited to study adaptive evolution in heterogeneous environment. This is a sessile species, which inhabits contrasted environments with a strong genetic structure, and differential responses to thermal stress between populations. This study proposes an integrative study of the adaptive response of C. rubrum to thermal stress. To understand the underlying mechanisms of thermal adaptation in this species, we studied three populations of C. rubrum from different depths (5. m, 20. m and 40. m depths) and therefore different thermal regimes in the same area. We first surveyed in situ the thermal environment and the corresponding stress levels at the different depths studied here. Then we submitted red coral colonies to different heat shocks in aquaria that mimicked in situ stresses (common garden conditions). We measured the expression levels of several candidate genes. Heat shock protein 70 (HSP 70) showed significant differences of expression depending on the depth of origin of the individuals and of their thermal history. Based on a complementary analysis of genetic structure, our study shows the evolution of a differential response at a local scale which might be explained by local adaptation or acclimatization. Our results also underline the trade-off between fitness and potential deleterious consequences linked to heat stress response. It also strongly emphasizes the conservation value of populations living at the edge of the species' range, as they represent an irreplaceable genetic pool for evolutionary rescue. © 2013 Elsevier B.V.Peer Reviewe

    Harvesting Effects, Recovery Mechanisms, and Management Strategies for a Long-Lived and Structural Precious Coral

    Get PDF
    14 pages, 5 figures, supporting information http://dx.doi.org/10.1371/journal.pone.0117250Overexploitation is a major threat for the integrity of marine ecosystems. Understanding the ecological consequences of different extractive practices and the mechanisms underlying the recovery of populations is essential to ensure sustainable management plans. Precious corals are long-lived structural invertebrates, historically overfished, and their conservation is currently a worldwide concern. However, the processes underlying their recovery are poorly known. Here, we examined harvesting effects and recovery mechanisms of red coral Corallium rubrum by analyzing long-term photographic series taken on two populations that were harvested. We compared the relative importance of reproduction and re-growth as drivers of resilience. Harvesting heavily impacted coral populations causing large decreases in biomass and strong size-class distribution shifts towards populations dominated by small colonies. At the end of the study (after 4 and 7 years) only partial recovery was observed. The observed general pattern of low recruitment and high mortality of new recruits demonstrated limited effects of reproduction on population recovery. Adversely, low mortality of partially harvested adults and a large proportion of colonies showing new branches highlighted the importance of re-growth in the recovery process. The demographic projections obtained through stochastic models confirmed that the recovery rates of C. rubrum can be strongly modulated depending on harvesting procedures. Thus, leaving the basal section of the colonies when harvesting to avoid total mortality largely enhances the resilience of C. rubrum populations and quickens their recovery. On the other hand, the high survival of harvested colonies and the significant biomass reduction indicated that abundance may not be an adequate metric to assess the conservation status of clonal organisms because it can underestimate harvesting effects. This study highlights the unsustainability of current harvesting practices of C. rubrum and provides urgently needed data to improve management practices that are still largely based on untested assumptions. © 2015 Montero-Serra et al.Support for this work was provided by a FPI grant (BES-2013-066150) to I. Montero-Serra and by a Ramon y Cajal research contract (RyC-2011-08134) to C. Linares. This study was partially funded by the Spanish Ministry of Economy and Innovation Biorock project (CTM2009-08045) and Smart project (CGL2012-32194). The authors are part of the Marine Conservation research group (2009 SGR 1174) from the Generalitat de CatalunyaPeer Reviewe

    Long-term demographic traits of red coral populations in the NW Mediterranean: insights into management strategies

    No full text
    2nd Mediterranean Symposium on the Conservation of Coralligenous and other Calcareous Bio-Concretions, 29-30 October 2014, Portorož, Slovenia.-- 5 pages, 3 figuresPeer Reviewe
    corecore