19 research outputs found

    Increased isolation mass for pebble accreting planetary cores in pressure maxima of protoplanetary discs

    Get PDF
    The growth of a pebble accreting planetary core is stopped when reaching its \textit{isolation mass} that is due to a pressure maximum emerging at the outer edge of the gap opened in gas. This pressure maximum traps the inward drifting pebbles stopping the accretion of solids onto the core. On the other hand, a large amount of pebbles (100M\sim 100M_\oplus) should flow through the orbit of the core until reaching its isolation mass. The efficiency of pebble accretion increases if the core grows in a dust trap of the protoplanetary disc. Dust traps are observed as ring-like structures by ALMA suggesting the existence of global pressure maxima in discs that can also act as planet migration traps. This work aims to reveal how large a planetary core can grow in such a pressure maximum by pebble accretion. In our hydrodynamic simulations, pebbles are treated as a pressureless fluid mutually coupled to the gas via drag force. Our results show that in a global pressure maximum the pebble isolation mass for a planetary core is significantly larger than in discs with power-law surface density profile. An increased isolation mass shortens the formation time of giant planets.Comment: 6 pages, 3 figures, This article has been accepted for publication in MNRAS Letters Published by Oxford University Press on behalf of the Royal Astronomical Societ

    High-resolution spectroscopic view of planet formation sites

    Full text link
    Theories of planet formation predict the birth of giant planets in the inner, dense, and gas-rich regions of the circumstellar disks around young stars. These are the regions from which strong CO emission is expected. Observations have so far been unable to confirm the presence of planets caught in formation. We have developed a novel method to detect a giant planet still embedded in a circumstellar disk by the distortions of the CO molecular line profiles emerging from the protoplanetary disk's surface. The method is based on the fact that a giant planet significantly perturbs the gas velocity flow in addition to distorting the disk surface density. We have calculated the emerging molecular line profiles by combining hydrodynamical models with semianalytic radiative transfer calculations. Our results have shown that a giant Jupiter-like planet can be detected using contemporary or future high-resolution near-IR spectrographs such as VLT/CRIRES or ELT/METIS. We have also studied the effects of binarity on disk perturbations. The most interesting results have been found for eccentric circumprimary disks in mid-separation binaries, for which the disk eccentricity - detectable from the asymmetric line profiles - arises from the gravitational effects of the companion star. Our detailed simulations shed new light on how to constrain the disk kinematical state as well as its eccentricity profile. Recent findings by independent groups have shown that core-accretion is severely affected by disk eccentricity, hence detection of an eccentric protoplanetary disk in a young binary system would further constrain planet formation theories.Comment: IAU Symposium 276 (contributed talk

    Transient chaos and fractal structures in planetary feeding zones

    Get PDF
    The circular restricted three body problem is investigated in the context of accretion and scattering processes. In our model a large number of identical non-interacting mass-less planetesimals are considered in planar case orbiting a star-planet system. This description allows us to investigate in dynamical systems approach the gravitational scattering and possible captures of the particles by the forming planetary embryo. Although the problem serves a large variety of complex motion, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where accretion or escape of the planetesimals occur, these have, in fact, a fractal structure. The fractal geometry of these "basins" implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power-law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.Comment: 6 pages, 4 figures, accepted to ApJ Letter

    Double neutron star formation via consecutive type II supernova explosions

    Full text link
    Since the discovery of the first double neutron star (DNS) system, the number of these exotic binaries has reached fifteen. Here we investigate a channel of DNS formation in binary systems with components above the mass limit of type II supernova explosion (SN II), i.e. 8 MSun. We apply a spherically symmetric homologous envelope expansion model to account for mass loss, and follow the dynamical evolution of the system numerically with a high-precision integrator. The first SN occurs in a binary system whose orbital parameters are pre-defined, then, the homologous expansion model is applied again in the newly formed system. Analysing 1 658 880 models we find that DNS formation via subsequent SN II explosions requires a fine-tuning of the initial parameters. Our model can explain DNS systems with a separation greater than 2.95 au. The eccentricity of the DNS systems spans a wide range thanks to the orbital circularisation effect due to the second SN II explosion. The eccentricity of the DNS is sensitive to the initial eccentricity of the binary progenitor and the orbital position of the system preceding the second explosion. In agreement with the majority of the observations of DNS systems, we find the system centre-of mass velocities to be less than 60 km/s. Neutron stars that become unbound in either explosion gain a peculiar velocity in the range of 0.02 - 240 km/s. In our model, the formation of tight DNS systems requires a post-explosion orbit-shrinking mechanism, possibly driven by the ejected envelopes.Comment: Accepted for publication in MNRA

    Transient Chaos and Fractal Structures in Planetary Feeding Zones

    Get PDF
    The circular restricted three body problem is investigated in the context of accretion and scatter- ing processes. In our model a large number of identical non-interacting mass-less planetesimals are considered in planar case orbiting a star-planet system. This description allows us to investigate in dynamical systems approach the gravitational scattering and possible captures of the particles by the forming planetary embryo. Although the problem serves a large variety of complex motion, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where accretion or escape of the planetesimals occur, these have, in fact, a fractal structure. The fractal geometry of these ”basins” implies that the dynam- ics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power-law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived

    Outbursts in Global Protoplanetary Disk Simulations

    Get PDF
    While accreting through a circumstellar disk, young stellar objects are observed to undergo sudden and powerful accretion events known as FUor or EXor outbursts. Although such episodic accretion is considered to be an integral part of the star formation process, the triggers and mechanisms behind them remain uncertain. We conducted global numerical hydrodynamics simulations of protoplanetary disk formation and evolution in the thin-disk limit, assuming both magnetically layered and fully magnetorotational instability (MRI)-active disk structure. In this paper, we characterize the nature of the outbursts occurring in these simulations. The instability in the dead zone of a typical layered disk results in "MRI outbursts". We explore their progression and their dependence on the layered disk parameters as well as cloud core mass. The simulations of fully MRI-active disks showed an instability analogous to the classical thermal instability. This instability manifested at two temperatures--above approximately 1400 K and 3500 K--due to the steep dependence of Rosseland opacity on the temperature. The origin of these thermally unstable regions is related to the bump in opacity resulting from molecular absorption by water vapor and may be viewed as a novel mechanism behind some of the shorter duration accretion events. Although we demonstrated local thermal instability in the disk, more investigations are needed to confirm that a large-scale global instability will ensue. We conclude that the magnetic structure of a disk, its composition, as well as the stellar mass, can significantly affect the nature of episodic accretion in young stellar objects.Comment: 16 figure

    Self-sustaining vortices in protoplanetary discs: Setting the stage for planetary system formation

    Get PDF
    The core accretion scenario of planet formation assumes that planetesimals and planetary embryos are formed during the primordial, gaseous phases of the protoplanetary disc. However, how the dust particles overcome the traditional growth barriers is not well understood. The recently proposed viscous ring-instability may explain the concentric rings observed in protoplanetary discs by assuming that the dust grains can reduce the gas conductivity, which can weaken the magnetorotational instability. We present an analysis of this model with the help of GPU-based numerical hydrodynamic simulations of coupled gas and dust in the thin-disc limit. During the evolution of the disc the dusty rings become Rossby unstable and breakup into a cascade of small-scale vortices. The vortices form secularly stable dusty structures, which could be sites of planetesimal formation by the streaming instability as well as direct gravitational collapse. The phenomenon of self-sustaining vortices is consistent with observational constraints of exoplanets and sets a favourable environment for planetary system formation

    On the evolution of vortex in locally isothermal self-gravitating discs: a parameter study

    Get PDF
    Gas rich dusty circumstellar discs observed around young stellar objects are believed to be the birthplace of planets and planetary systems. Recent observations revealed that large-scale horseshoe-like brightness asymmetries are present in dozens of transitional protoplanetary discs. Theoretical studies suggest that these brightness asymmetries bf could be caused by large-scale anticyclonic vortices triggered by the Rossby Wave Instability (RWI), which can be excited at the edges of the accretionally inactive region, the dead zone edge. Since vortices may play a key role in planet formation, investigating the conditions of the onset of RWI and the long-term evolution of vortices is inevitable. The aim of our work was to explore the effect of disc geometry (the vertical thickness of the disc), viscosity, the width of the transition region at the dead zone edge, and the disc mass on the onset, lifetime, strength and evolution of vortices formed in the disc. We performed a parametric study assuming different properties for the disc and the viscosity transition by running 1980 2D hydrodynamic simulations in the locally isothermal assumption with disc self-gravity included. Our results revealed that long-lived, large-scale vortex formation favours a shallow surface density slope and low- or moderate disc masses with Toomre Q1/hQ \lesssim 1/h, where hh is the geometric aspect ratio of the disc. In general, in low viscosity models, stronger vortices form. However, rapid vortex decay and re-formation is more widespread in these discs.Comment: 20 pages, 20 figs., 3 tables. Accepted to MNRA

    On the cavity of a debris disc carved by a giant planet

    Get PDF
    One possible explanation of the cavity in debris discs is the gravitational perturbation of an embedded giant planet. Planetesimals passing close to a massive body are dynamically stirred resulting in a cleared region known as the chaotic zone. Theory of overlapping mean-motion resonances predicts the width of this cavity. To test whether this cavity is identical to the chaotic zone, we investigate the formation of cavities by means of collisionless N-body simulations assuming a 1.25–10 Jupiter mass planet with eccentricities of 0–0.9. Synthetic images at millimetre wavelengths are calculated to determine the cavity properties by fitting an ellipse to 14 per cent contour level. Depending on the planetary eccentricity, epl, the elliptic cavity wall rotates as the planet orbits with the same (epl 0.2) period that of the planet. The cavity centre is offset from the star along the semimajor axis of the planet with a distance of d = 0.1q−0.17e0.5 pl in units of cavity size towards the planet’s orbital apocentre, where q is the planet-to-star mass ratio. Pericentre (apocentre) glow develops for epl < 0.05 (epl > 0.1), while both are present for 0.05 ≤ epl ≤ 0.1. Empirical formulae are derived for the sizes of the cavities: δacav = 2.35q0.36 and δacav = 7.87q0.37e0.38 pl for epl ≤ 0.05 and epl > 0.05, respectively. The cavity eccentricity, ecav, equals to that of the planet only for 0.3 ≤ epl ≤ 0.6. A new method based on Atacama Large Millimeter/submillimeter Array observations for estimating the orbital parameters and mass of the planet carving the cavity is also given
    corecore