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ABSTRACT
Gas rich dusty circumstellar discs observed around young stellar objects are believed to be
the birthplace of planets and planetary systems. Recent observations revealed that large-scale
horseshoe-like brightness asymmetries are present in dozens of transitional protoplanetary
discs. Theoretical studies suggest that these brightness asymmetries bf could be caused by
large-scale anticyclonic vortices triggered by the RossbyWave Instability (RWI), which can be
excited at the edges of the accretionally inactive region, the dead zone edge. Since vortices may
play a key role in planet formation, investigating the conditions of the onset of RWI and the
long-term evolution of vortices is inevitable. The aim of our work was to explore the effect of
disc geometry (the vertical thickness of the disc), viscosity, the width of the transition region at
the dead zone edge, and the disc mass on the onset, lifetime, strength and evolution of vortices
formed in the disc. We performed a parametric study assuming different properties for the
disc and the viscosity transition by running 1980 2D hydrodynamic simulations in the locally
isothermal assumption with disc self-gravity included. Our results revealed that long-lived,
large-scale vortex formation favours a shallow surface density slope and low- or moderate disc
masses with Toomre 𝑄 . 1/ℎ, where ℎ is the geometric aspect ratio of the disc. In general, in
low viscosity models, stronger vortices form. However, rapid vortex decay and re-formation is
more widespread in these discs.

Key words: accretion, accretion disc—hydrodynamics— instabilities—methods: numerical
— protoplanetary discs

1 INTRODUCTION

Since the first detection of an extrasolar planet around a main-
sequence star by Mayor & Queloz (1995), as of early 2021, more
than 4300 exoplanets have been discovered. Three-quarter of the
exoplanets are found in planetary systems (see, e.g. the Exoplanet
Exploration Program and the Jet Propulsion Laboratory for NASA’s
Astrophysics Division1). The diversity of planetary systems urge
the necessity of understanding the evolution of planets and plane-
tary systems. Planet formation can be explained based on the core-
accretion theory (see e.g. Safronov 1969, Goldreich & Ward 1973,
Pollack et al. 1986). In this scenario, planetesimals, the building
blocks of planets, are build-up by the coagulation of dust parti-
cles. However, core-accretion theory suffers from the rapid loss of
pebbles due to radial drift (Weidenschilling 1977). An effective so-
lution to this problem can be the development of dust traps formed

★ E-mail:tarczaynehez.dora@csfk.org
1 https://exoplanets.nasa.gov/

at pressure maxima (see, e.g. Haghighipour & Boss 2003 and the
references therein).

Recent theoretical studies revealed that anticyclonic vortices
could form in protoplanetary discs. Vortices can be developed via
the Rossby wave instability (RWI, Rossby & Collaborators 1939.
RWI is excited at a vortensity minimum of a steep pressure gradient
in a protoplanetary disc (Lovelace et al. 1999). Such places can
occur at sharp viscosity transition regions, at which the magneto-
rotational instability (MRI, see, Balbus &Hawley 1991) is switched
off and on, (see Lyra et al. 2015), e.g., at the edges of a dead zone
(Gammie 1996) or the walls of a gap opened by a giant planet (de
Val-Borro et al. 2007). In the eye of an anticyclonic vortex, pressure
maximumdevelops. Such places tend to trap dust particles (seemore
details in Barge & Sommeria 1995; Klahr & Henning 1997) which
promotes the formation of planetesimals and planetary embryos
(Meheut et al. 2012).

During disc life, the gas and dust material of protoplanetary
discs are consumed. Transition discs are between the phase of a
primordial gas- and dust-rich and gas- and dust-depleted phase. In
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this phase, the inner part of the disc material is depleted, while
the outer parts of the disc contains a significant amount of gas
and dust. Recent (sub)millimetre-wavelength observations revealed
large structures like rings, inner cavities (see e.g. Andrews et al.
2009) and horseshoe-like brightness asymmetries in about a dozen
transition discs (see e.g. Brown et al. 2009; van der Marel et al.
2013; Casassus et al. 2015; Marino et al. 2015; Wright et al. 2015;
Andrews et al. 2018; Macías et al. 2018; Pinilla et al. 2019 and
the references therein). Ring-like structures are also found by sub-
millimetre observations done by ALMA of the DSHARP project
(see, e.g., Dullemond et al. 2018).

The origin of brightness asymmetries is still under a great
debate. Although cavities in the gas are thought to be caused by
an embedded massive planet (see details in e.g., van der Marel
et al. 2021) and photo-evaporation, while lopsided morphologies
in the dust are thought to be caused by dust accumulation in the
eye of large-scale anticyclonic vortices. Regály et al. (2017) found
intrinsic morphological differences between vortices formed at the
outer edge of the dead zone and the edges of a wall of a cavity
opened by a giant planet. They found that vortices formed at a
giant planet opened gap wall are azimuthally less elongated and
have higher azimuthal contrasts than they would have at the edge
of a dead zone. Moreover, the vortex excited at the wall of a gap
dissipates within 104−105 years and lasts longer only in the case of
a nearly inviscid disc. On the contrary, vortices formed at the dead
zone edge can have an order of magnitude more extensive lifetime.

The gravitational stability of the disc can be described by the
Toomre 𝑄 parameter (Toomre 1964). It was shown that the disc
becomes gravitationally unstable to the axisymmetric perturbations
when 𝑄 . 1 in massive discs. Note that non-axisymmetric per-
turbations, i.e., spiral arms, can occur if the Toomre 𝑄 parameter
exceeds unity (see, e.g., Lau & Bertin 1978). Hence, the mass of
the disc is also a crucial point in modelling the dynamics of gas.
Theoretical work of Lin (2012) and Lin & Papaloizou (2011) re-
vealed that sufficiently high disc mass could delay or even hinder
large-scale vortex formation. Bae et al. (2015) found that large-
scale vortices formed at the outer regions of protostellar discs tend
to dissipate as 𝑄 reaches unity. Lovelace & Hohlfeld (2013) and
Yellin-Bergovoy et al. (2016) found that self-gravity is important
for discs with Toomre parameter 𝑄 < 𝑄crit = 1/ℎ, where ℎ de-
scribes the geometric aspect ratio of the disc . As 𝑄 reaches unity,
large-scale vortices tend to dissipate.

Investigation of Regály & Vorobyov (2017a) revealed that
above a relatively low disc mass (𝑀d/𝑀★ ≥ 0.006), self-gravity
has an essential effect on the long-term evolution of large-scale vor-
tices formed at sharp viscosity transitions. They showed that disc
self-gravity stretches the vortex azimuthally, weakens and there-
fore shortens its lifetime, similarly to what was found by (Zhu &
Baruteau 2016).

Vortex enhanced planetesimal formation could be severely
constrained for discs, in which no stable vortices can form, or large-
scale vortex exists only on a comparatively short time scale. The
lifetime of vortices might play a fundamental role in planet forma-
tion, as vortices are capable of collecting dust (the building blocks
of planetesimals, see, e.g., Barge & Sommeria 1995; Klahr & Hen-
ning 1997; Meheut et al. 2012). Hence, it is essential to bind the
parameter space to determine the mass of stable vortex hosting
discs, potentially helping planet formation. Moreover, constraining
disc mass theoretically by simulations is also essential from the
observational viewpoint.

In this paper, we investigate the effect of disc geometry (aspect
ratio), the width of the viscosity transition region, disc mass and

viscosity on the vortex formation, evolution and lifetime in self-
gravitating and locally isothermal discs.We performed a parametric
study, which includes 1980 models using a different wide range of
disc parameters (see Table 1).

In Section 2, we present our 2D hydrodynamic model. In Sec-
tion 3, we show our results on the role of initial density slope, disc
geometry, and viscosity on the formation, evolution and lifetime
of the vortices. Section 4 gives a discussion on our results and an
estimation of the maximum allowable disc mass for vortex excita-
tion. We conclude our results in Section 5. AppendixA deals with
all model results, assuming a canonical reduction of viscosity in-
side the dead zone. Additional models assuming ten times stronger
reduction in dead zone viscosity is available in the digital version.

2 HYDRODYNAMIC MODEL

We run 2D hydrodynamic simulations for the parameter study on
the long-term vortex evolution in a protoplanetary disc. We used an
improved version of the GPU supported the gfargo2 code, which
incorporates disc self-gravity. Hydrodynamical equations are solved
on a 2D polar (𝑅, 𝜙) grid in the locally isothermal approximation.

The vertically integrated continuity and Navier-Stokes equa-
tions govern the dynamics and evolution of a locally isothermal
protoplanetary disc, which read as follows

𝜕Σ

𝜕𝑡
+ ∇ · (Σv) = 0, (1)

𝜕v
𝜕𝑡

+ (v · ∇)v = − 1
Σ
(∇𝑃 + ∇·𝑇) − ∇Φtot, (2)

where Σ and 𝑃 are the surface mass density and the vertically
integrated pressure of the gas, respectively. v denotes the velocity
of the gas, and 𝑇 is the viscous stress tensor whose components can
are detailed in Vorobyov & Basu (2010).

We include the disc self-gravity, hence the total gravitation
potential (Φtot) contains the gravitational potential of the central
star (Φ★), and the disc itself (Φsg). As a large-scale vortex forms,
the barycentre of the star-disc system is shifted from the centre of
the grid, hence the indirect potential (Φind) has also included inΦtot
(see its importance in, e.g., Mittal & Chiang 2015, Zhu & Baruteau
2016 and Regály & Vorobyov 2017b). Accordingly,

Φtot = Φ★ +Φind +Φsg, (3)

where

Φ★ = −𝐺 𝑀★

𝑟
, (4)

Φind = 𝑟 · 𝐺
∫
d𝑚(𝒓′)
𝑟3

𝒓′, (5)

Φsg = −𝐺
∫ 𝑟out

𝑟in

𝑟 ′𝑑𝑟 ×
∫ 2𝜋

0

ΣdΦ′√︁
𝑟 ′2 + 𝑟2 − 2𝑟𝑟 ′ cos (Φ′ −Φ)

. (6)

Here 𝑟in and 𝑟out are the inner and outer boundaries of the disc,
while d𝑚(r′) refers to the mass contained in a given grid cell. To

2 http://fargo.in2p3.fr/-GFARGO-
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Table 1. Parameters used for simulations. Here 𝛼dz, ℎ, and 𝑝 refer to the 𝛼-parameter in the dead zone, the geometric aspect-ratio of the disc, and the surface
density exponent, respectively. Columns 5, 6, and 7 list Σ0 values for a given 𝑀d with 𝑝 = 0.5, 1.0, and 1.5, respectively. The width of the transition region,
Δ𝑟dz, in nits of tyhe disc scale-height is given in column 8. Δ𝑟dz (in astronomical units) assuming ℎ = 0.025, 0.05, and 0.1 are listed in columns 9, 10, and 11,
respectively.

𝛼dz ℎ 𝑝
𝑀d Σ0, 𝑝=0.5 Σ0, 𝑝=1 Σ0, 𝑝=1.5 Δ𝑟dz Δ𝑟dz,h=0.025 Δ𝑟dz,h=0.05 Δ𝑟dz,h=0.1
[𝑀�] [𝑀�/AU2] [𝑀�/AU2] [𝑀�/AU2] [H] [AU] [AU] [AU]

10−4 0.1 0.5 0.001 6.1144 · 10−6 3.1831 · 10−6 1.6111 · 10−6 0.5 0.3 0.6 1.2
10−5 0.05 1 0.002 1.2229 · 10−5 6.3662 · 10−6 3.2221 · 10−6 0.65 0.39 0.78 1.56

0.025 1.5 0.003 1.8343 · 10−5 9.5493 · 10−6 4.8332 · 10−6 0.8 0.48 0.96 1.92
0.004 2.4458 · 10−5 1.2734 · 10−5 6.4443 · 10−6 0.95 0.57 1.14 2.28
0.005 3.0572 · 10−5 1.5916 · 10−5 8.0554 · 10−6 1.1 0.66 1.32 2.4
0.006 3.6686 · 10−5 1.9099 · 10−5 9.6663 · 10−6 1.25 0.75 1.5 3
0.007 4.2801 · 10−5 2.2282 · 10−5 1.1278 · 10−5 1.4 0.84 1.68 3.36
0.008 4.9815 · 10−5 2.5465 · 10−5 1.2889 · 10−5 1.55 0.93 1.86 3.72
0.009 5.5029 · 10−5 2.8648 · 10−5 1.4500 · 10−5 1.7 1.02 2.04 4.08
0.01 6.1144 · 10−5 3.1831 · 10−5 1.6111 · 10−5 1.85 1.11 2.22 4.44

2 1.2 2.4 4.8

solve equation (6), Fast Fourier Transform technique (see details in
Section 2.8 in Binney & Tremaine 1987) was applied. To investigate
disc fragmentation in gravitationally unstable protoplanetary discs,
the same technique was successfully used in Vorobyov & Basu
(2010) and Vorobyov & Basu (2015). Regály & Vorobyov (2017a)
also applied this technique for investigating vortex formation in
self-gravitating discs.

As we use a locally isothermal assumption, the equation of
state of the gas reads as

𝑃 = Σ𝑐2s , (7)

where 𝑃 and 𝑐s are the local pressure and sound-speed of the gas,
respectively. In a locally isothermal approximation, the local sound-
speed can be given as

𝑐s = 𝐻Ω, (8)

where 𝐻 = ℎ𝑟 is the local scale-height of the disc and Ω =√︁
𝐺𝑀★/𝑟3 is the Keplerian angular velocity. 𝐺 and 𝑀★ are the
gravitational constant and the mass of the central star (both set to
unity) at a given distance (𝑟) measured from the central star.

To model the accretion of the gas (assumed to be driven by
the magneto-rotational instability, MRI) onto the central star, for
simplicity,we used the𝛼-prescription of Shakura&Sunyaev (1973).
In this assumption, the kinematic viscosity (a) of the gas is

a = 𝛼𝑐2s /Ω, (9)

where 𝛼 represents the effectiveness of MRI.
Formation of vortices can be excited at sharp viscosity transi-

tion developed in the edges of the dead zone. To describe the outer
edge of a dead zone, we reduced the 𝛼 parameter of the gas in the
dead zone. As the transition region at the boundaries of the accre-
tionally active and inactive zones is sharp (see Lyra et al. 2015),
this model is plausible to describe the edges of the dead zone. Note
that utilising 𝛼-prescription leads to a reduced kinematic viscosity
in the dead zone also. For the reduction of 𝛼 in the dead zone,
(𝛼dz = 𝛿𝛼𝛼), we used a steep 𝛼 transition, which follows as

𝛿𝛼 = 1 − 1
2
(1 − 𝛼mod)

[
1 − tanh

(
𝑟 − 𝑟dz
Δ𝑟dz

)]
, (10)

where 𝛿𝛼 reduces 𝛼 by a factor of 𝛼mod. The width of the transition
region at the outer dead zone edge, 𝑟dz is described by Δ𝑟dz. Note

that, we modelled the outer edge of the dead zone only, as the inner
edge lays well inside our computational domain. Note that with this
model, the distance of the outer edge of the dead zone is fixed over
time.

2.1 Investigated disc models

The inner and outer boundaries of the disc were set to 𝑟min = 3 and
𝑟max = 50AU, respectively. The numerical resolutionwas 256 in the
radial and 512 in the azimuthal direction.We used logarithmic in the
radial and equidistant distribution of the grid cells in the azimuthal
direction. In order to verify the numerical convergency, we run
additional simulations with a numerical resolution of 512 × 1024
and 1024 × 2048. We found that our simulations with the standard
configurations were numerically convergent.

We used wave damping boundary conditions of de Val-Borro
et al. (2006) on both the outer and inner boundaries of the disc.
Wave-killing zones are used at 𝑟 ≤ 1.2 · 𝑟min and 𝑟 ≥ 0.9 · 𝑟max for
each quantities over a time-scale of 10 orbits to the initial state. We
note that with damping boundary conditions, the disc mass was not
conserved within the simulation time. Instead, it increased by less
than a percentage. All simulations were run for 105 yrs, covering
1000 orbits at the distance of the vortex centre.

Initially, the surface density profile was set as a power-law
function of distance

Σ = Σ0𝑟
−𝑝 , (11)

where Σ0 is the surface density at 1 AU. Three different surface
density exponent (𝑝) were investigated (0.5, 1 and 1.5). We mod-
elled 10 different disc masses between 0.001 and 0.01𝑀� with a
step of 0.001𝑀� . The corresponding Σ0 values for the given disc
mass and 𝑝 can be found in Table 1. The effect of disc geometry
was investigated by assuming three different values for ℎ (0.1, 0.05,
0.025). Note that the initial disk is not a quasy steady state solution
in these models due to the initially applied viscosity reduction.

In order to investigate the effect of viscosity and the width of
the viscosity reduction on large-scale vortex formation, we repeated
all simulations with two different values of 𝛼dz (10−4 and 10−5),
while the global 𝛼 parameter was set to 10−2 for both cases.

According to Matsumura & Pudritz (2006), the outer edge
of the dead zone lies between 12 and 36 AU. Therefore, 𝑟dz was
set to 24 AU in all simulations. The excitation of RWI requires

MNRAS 000, 1–15 (2021)
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Figure 1. The width of the viscosity transition region at the outer edge of
the dead zone at 24 AU in the case of ℎ = 0.05 and 𝛼dz = 10−5. The ten
different models assume 0.5Hdz ≤ Δ𝑟dz ≤ 2Hdz.

sharp viscosity transition (Δ𝑟dz ≤ 2𝐻dz, see Lyra et al. 2009 and
Regály et al. 2012). Therefore, we used 11 different values for Δ𝑟dz
between 0.5 − 2Hdz with a resolution of 1/6Hdz (see, e.g., Fig. 1
in which the viscosity transition is showed for ℎ = 0.05 models).
Emphasize that 𝛼 depends on ℎ, therefore the steepness of viscosity
transition differs in ℎ = 0.025 and ℎ = 0.1 models. Table 1 shows
the corresponding values of Δ𝑟dz with the different aspect-ratios in
astronomical units.

3 RESULTS

As a pressure maximum develops at the outer edge of the dead
zone, gas tends to accumulate there, forming a ring-like density
enhancement. In general, RWI is excited, which results in vortex
formation at the pressure maximum with a mode number of 𝑚 =

3 − 6. At later stages, small-scale vortices merge and form a single,
large-scale anticyclonic vortex.

In general, the mode number is higher in low viscosity models
(i.e., 𝛼dz = 10−5), than it is in high viscosity models (𝛼dz = 10−4),
independent of disc mass, which is consistent with what was found
by Regály & Vorobyov (2017a). Moreover,𝑚 depends on the ℎ, i.e.,
the initial 𝑚 is the highest in ℎ = 0.025 models (∼ 5 − 6), while it
is 4 − 6, and 3 − 4 in ℎ = 0.05 and ℎ = 0.1, respectively, in the case
of low viscosity models, independent of 𝑝, or Δ𝑟dz.

In order to investigate the effect of the kinematic viscosity,
disc geometry and the width of the viscosity transition region on
the long-term evolution of vortices,we calculated the vortex strength
and the mean azimuthal density profile (𝛿Σ) across the vortex eye.

Vortex strength was measured as follows. First, the surface
density distribution (Σ) was normalised by its initial distribution
(Σ0) at all time steps. In the next step, we fitted the 2D elliptical
contours of the normalised surface density distribution (Σ/Σ0) on
a polar grid. For this, we assumed that the density distribution is
elliptical inside the vortex, see, e.g., Kida 1981 and Chavanis 2000).
The aspect ratio of the fitted ellipse, 𝜒dens, was measured at the 87%
contour level of the maximum value of Σ/Σ0.

𝛿Σ was measured at the vicinity (±10 grid cells in the radial
direction) of the radial distance of the vortex eye. For this, we cal-
culated the ratio of the maximum and minimum value of Σ/Σ0. The
evolution of vortices can be followed by repeating this procedure

at each time step. For an example, the evolution of 𝛿Σ in some
representative models is shown in Fig. 2.

We found three distinct modes of evolution of the pressure
jump. In Case I, no RWI excitation was observed. Case II represents
models in which we observed large-scale vortex formation (𝑚 = 1),
while in Case III, only small-scale vortex formation was found
(𝑚 > 1), i.e., the vortex coagulation process was inhibited.

We further divided Cases II and III into three subgroups. In
Case II a) large-scale, while in Case III a) small-scale vortex forma-
tion occurred. For both cases, vortices lived only for a short-term.
Cases II b) and III b) represent those models in which vortex re-
formation (vortex formation after dissipation) occurred. In Case
II c) and Case III c), the large- and small-scale vortices survived
longer than our simulation time (i.e., long-term vortex formation
was observed). Fig. 2 shows an example for each Cases.

In the following three sections, we present our results for 𝛼dz =
10−4 viscosity models. The effect of viscosity (by assuming, 𝛼dz =
10−5) is presented in Section 3.4.

3.1 Vortex evolution in 𝑝 = 0.5 models

3.1.1 ℎ = 0.025 simulations

In the geometrically thin cases (ℎ = 0.025), large-scale vortex did
not form. However, excitation of RWI could be observed below
the medium mass models (𝑀d/𝑀★ . 0.005), in which small-scale
vortices formed, but their coagulation was inhibited. We also found
that the wider the viscosity transition region was, the later the RWI
excitation occurred (see Fig. A1).

In low disc mass models that assumes steep viscosity transition
region (e.g., 𝑀d/𝑀★ = 0.001, Δ𝑟dz = 0.5𝐻dz), long-lived but
small-scale vortices formed (see panel of Case III c) in Fig. 2). With
increased disc mass, the lifetime of the vortices was shortened and
vortex re-formation was observed (see panel of Case III b) in Fig.
2).

The entire disc becamegravitationally unstable and fragmented
into small clumps within a few tenths of orbits (∼ 10−20, see panel
a) in Fig. 3) for high disc masses (𝑀d/𝑀★ > 0.007). However, at
later stages, these clumps dissolved and formed a ring-like pressure
bump at the dead zone edge (see panels b in Fig. 3). Although the
disc was RWI unstable in this configuration, small-scale vortices
could not be merged into a single large-scale vortex. The small-
scale vortices could live for only a few orbits (about 10 orbits for
𝑀d/𝑀★ = 0.01, Δ𝑟dz = 0.5𝐻dz, see, e.g., panels c in Fig. 3). The
RWI excitation and vortex decay repeatedly occurred in this partic-
ular model. This indicates a series of formation and dissipation of
multiple small-scale vortices with intermittent multiple ring struc-
ture.

Here we note that ring-like structures seen on panels b, d, f,
and h of Fig. 3 are seemingly similar to the structures found by
the DSHARP project analysing ALMA observations (see, e.g. An-
drews et al. 2018; Dullemond et al. 2018). However, the ring-like
structures seen in our simulations were developed in the gaseous
component of the disc, while observations reflect the dust distribu-
tion. Therefore, further investigation taking into account the dust
dynamics is required to explore this phenomenon in details.

3.1.2 ℎ = 0.05 simulations

In low disc mass models (𝑀d/𝑀★ = 0.001 and 0.002), large scale
vortex formed. The lifetime and strength of the large-scale vortex
was dependent on disc mass and Δ𝑟dz. Namely, as the width of the

MNRAS 000, 1–15 (2021)



Vortex parameter study in self-gravitating discs 5

Figure 2. The evolution of 𝛿Σ profile measured at the vicinity of the vortex eye in time in seven representative models. Time is measured in the number of orbits
at the distance of the vortex eye. Case I represents those models in which RWI was not excited. Case II contains models where large-scale vortex formation
(𝑚 = 1) was occurred, while in Case III the coagulation of small-scale (𝑚 > 1) vortices was inhibited. We further divided Class II and III into three subgroups:
subgroup a) represents those models in which vortex formation and dissipation occurred (short-term vortices). Subgroup b) represents those models in which
vortex formation, dissipation and re-formation were found. For Case II b) the vortex was sustained for about 200 orbits, then dissolved. After about 100 orbits,
a new large-scale vortex was developed. Subgroup c) represents those models in which vortices lasted longer than our simulation time (long-term vortices).

transition region widened, the lifetime of the vortex shortened and
also the 𝛿Σ contrast weakened.

In medium-disc mass models (0.003 < 𝑀d/𝑀★ < 0.006),
small-scale vortices (𝑚 > 1) formed. The lifetime of the vortices
was shortened with increased disc mass and increased Δ𝑟dz. Note
that re-formation of vortices was common in these models. The
phase between two 𝑚 > 1 periods lasted longer at wider Δ𝑟dz (see
Fig. A4).

Large-scale vortices formed in models with 𝑀d/𝑀★ ≥ 0.006
after 2-3 vortex cycles (see high disc mass panels in Fig. A4). How-
ever, increased disc mass weakened the 𝛿Σ contrast and also ex-
tremely shortened the lifetime of the large-scale vortex (vortex re-
formation appeared within a few tenths of orbits). We also found
that large-scale vortices in high disc mass models were elongated
in the radial and azimuthal direction, leading to a highly eccentric
disc. This phenomenon is caused by the indirect term. See details
in Section4.1 in the Discussion.

3.1.3 ℎ = 0.1 simulations

Although RWI was excited in these models assuming low disc
masses, large-scale vortex formationwas inhibited due to the stretch-
ing effect of self-gravity. To resolve the apparent contradiction, see
details in Section 4.1 in the Discussion. Large-scale vortices were
stretched within a short period (a few tenths of orbits), and a ring-
like structure formed. In high disc mass models, the mass of the

accumulated gas in the vortex has grown sufficiently large to shift
the barycentre of the star-disc system. Therefore, the disc tended to
wobble around the barycentre. This led to a highly elongated vortex
shape in the radial direction.

3.2 Vortex evolution in 𝑝 = 1 models

3.2.1 ℎ = 0.025 simulations

In low mass models (𝑀d/𝑀★ . 0.003 − 0.004), large-scale vortex
formation occurred, assuming Δ𝑟dz < 1.7𝐻dz. The coagulation
process of small-scale vortices did not occur within the simulation
time in the middle- (0.003 − 0.004 . 𝑀d/𝑀★ . 0.006 − 0.007)
and high-disc mass cases (𝑀d/𝑀★ ≥ 0.007). Moreover, increased
disc mass narrowed the Δ𝑟dz range in which RWI excitation could
occur.

In high discmassmodels, vortices formed only in sharp viscos-
ity transitionmodels (e.g. assuming𝑀d/𝑀★ = 0.01, RWI excitation
occurred if Δ𝑟dz < 0.95𝐻dz.)

3.2.2 ℎ = 0.05 simulations

In 𝑝 = 1models, small-scale vortices were able to coagulate. Hence
large-scale vortex developed in these models. The strength and life-
time of the large-scale vortex depend on 𝑀d and Δ𝑟dz. Namely,
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Figure 3. Evolution of the surface mass density distribution in 𝑝 = 0.5, ℎ = 0.025 high disc mass model (𝑀d/𝑀★ = 0.01) assuming a sharp viscosity
transition (Δ𝑟dz = 0.5𝐻dz). The number of orbits is labelled in the right corner of each panel (e.g. panel a refers to the time-step at 20𝑡ℎ orbits). After 20 orbits,
the disc was fragmented into small scale clumps (see panel a). Clumps dissolved within 30 orbits and formed multiple ring-like structures (see panel b). After
70 orbits, the ring became RWI unstable, which resulted in the formation of multiple small-scale vortices (see panel c). Within less than ten orbits (see panel
d), these vortices dissolved, and the ring-like structure reappeared. The process of vortex-ring transformation re-occurred at later stages. Emphasise that the
coagulation of small-scale vortices was suppressed by the effect of self-gravity. Thus large-scale vortices could not be formed.

increased disc mass or width of the viscosity transition region weak-
ened the vortex and shortened its lifetime.

3.2.3 ℎ = 0.1 simulations

Large-scale vortex formation occurred in ℎ = 0.1 cases. However,
we found that RWI excitation is Δ𝑟dz limited within the investigated
Δ𝑟dz - 𝑀d range. Independent of disc mass, discs beyond Δ𝑟dze >
1.4𝐻dz were RWI stable (see Fig. A7).

Moreover, in low-disc mass models, vortex re-formation oc-
curred. We also found that the contrast 𝛿Σ (and hence the vortex
strength) is directly proportional to the disc mass: the higher the
disc mass, the stronger the contrast.

3.3 Vortex evolution in 𝑝 = 1.5 models

3.3.1 ℎ = 0.025 simulations

Contrary to 𝑝 = 0.5 and 1 cases, large-scale vortices developed in
those 𝑝 = 1.5 models where RWI was excited, independent of the
disc mass. Vortices formed in 𝑝 = 1.5models were stronger (the 𝛿Σ
contrast was higher, thus less elongated in the azimuthal direction)
than in 𝑝 = 1 models. For example, 𝛿Σ ' 6.5 for 𝑝 = 1.5 models,
while 𝛿Σ ' 4 for 𝑝 = 1models in low disc mass cases, see Figs. A2
and A3. We also found that increasing disc mass or Δ𝑟dz weakened
and shortened the lifetime of the large-scale vortex. Moreover, RWI
excitation was Δ𝑟dz limited, similar to 𝑝 = 1, ℎ = 0.1 models.
Assuming Δ𝑟dz > 1.4𝐻dz, the disc was RWI stable.

3.3.2 ℎ = 0.05 simulations

In these models, large-scale vortex developed in all cases in which
RWIwas excited.However, RWI excitationwasΔ𝑟dz limited, similar
to ℎ = 0.025 models. Discs having Δ𝑟dz above 1.4𝐻dz were RWI
stable (see Fig. A5), hence vortex formation was absent.

3.3.3 ℎ = 0.1 simulations

Similar to 𝑝 = 1models, RWI excitationwasΔ𝑟dz limited in 𝑝 = 1.5
models: we did not observe RWI excitation in simulations where
Δ𝑟dz > 1.25𝐻dz (see Fig. A8).

3.4 The effect of viscosity

As a general effect of the viscosity, vortex formation could be
triggered at wider transition region of viscosity in low viscos-
ity (𝛼dz = 10−5) models, see, e.g., upper (𝛼 = 10−4) and lower
(𝛼 = 10−5) panels of Fig. 4. Δ𝑟dz,crit is the critical value for Δ𝑟dz,
below which RWI excitation occurred, which is a necessary con-
dition to form large-scale vortices. Assuming 𝑝 = 1, ℎ = 0.05,
and the lowest disc mass in 𝛼dz = 10−4 and 10−5 models, Δ𝑟dz,crit
were 1.4 and 1.7𝐻dz, respectively (see panels a and b in Fig.4).
This means that the maximum value for Δ𝑟dz at which RWI can be
excited was 0.3𝐻dz wider in low viscosity models. This trend holds
for ℎ = 0.025, and 0.05 models too, however, the difference was
0.15𝐻dz in ℎ = 0.1 models.

It can also be seen in the panels a and b of Fig. 4 that viscosity
affects the contrast in 𝛿Σ. In low viscosity models, azimuthally less
elongated, i.e., stronger vortices formed. Viscosity also affects the

MNRAS 000, 1–15 (2021)



Vortex parameter study in self-gravitating discs 7

Figure 4. Evolution of 𝛿Σ in ℎ = 0.05, 𝑝 = 1 models. Panel a refers to 𝛼 = 10−4 cases, while panel b refers to 𝛼 = 10−5 models. The width of the transition
region widens, and the disc mass increases from left to right and from top to bottom, respectively.
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8 D. Tarczay-Nehéz, K. Rozgonyi and Zs. Regály

Figure 5. Vortex splitting in a particular model in which ℎ = 0.025, 𝑝 = 1, Δ𝑟dz = 0.95𝐻dz and 𝑀d/𝑀★ = 0.004 were used. The different columns refer to
the different stages of the azimuthal profile of 𝛿Σ, PV and the Toomre 𝑄. From left to right, frames #368, #700, #780 and #900 are shown. Pink horizontal
lines on the panels refer to the region in which the radial average of Σ/Σ0 was calculated.

vortex lifetime: in general, vortices were sustained longer in low
viscosity models. However, vortex re-formation occurred mainly in
low viscosity models (see e.g. low disc mass models on the lower
panels of Fig. 4).

Regarding the jumps appreciable in the second columns on
both panels of Fig. 4) we found that they were caused by the al-
gorithm applied to determine the centre of the vortex. Namely, the
local maximum of 𝛿Σ can be moved sometimes quite fast.

For a more comprehensive view of the effect of viscosity,
additional figures of low viscosity models are available in the online
material.

4 DISCUSSION

4.1 Vortex splitting and disc stability

After fully developed, large-scale vortices tend to split up into small-
scale vortices (two, three or more), mostly in low disc mass models
assuming a disc aspect ratio of ℎ = 0.05 and 0.025 and a surface
density slope 𝑝 = 0.5, 1 (see, e.g., models assuming 𝑀d/𝑀★ .
0.004𝑀� and Δ𝑟dz . 0.95𝐻dz in Fig. A2). This effect can be seen
both in high- and low viscosity models. Although this phenomenon
is more common in low viscosity models.

As discussed in Section 1, disc self-gravity tends to decrease
the strength and lifetime of vortices in high disc mass models as
found by (see e.g., Regály & Vorobyov 2017a). The stability cri-

terion of the disc against self-gravitational fragmentation can be
described by the Toomre 𝑄 parameter (Toomre 1964) as follows

𝑄 =
𝑐𝑠Ω

𝜋𝐺Σ
> 1. (12)

RWI is triggered in the local minimum of potential vorticity, PV,
(referred to as Z , or vortensity, see, e.g., Li et al. 2000, 2005; Koller
et al. 2003). PV can be expressed as

PV =
®𝜔
Σ
𝑆−2/𝛾 , (13)

where ®𝜔 = ∇× v is the vorticity (the curl of the velocity field), and
𝑆 = 𝑃/Σ𝛾 is the entropy. As we assume locally isothermal models,
𝛾 = 1, where 𝛾 is the adiabatic index.

Fig. 5 shows the azimuthal distribution of 𝛿Σ, PV and the
Toomre 𝑄 at different stages of the vortex splitting for ℎ = 0.025,
𝑝 = 1, Δ𝑟dz = 0.95𝐻dz and 𝑀d/𝑀★ = 0.004 disc with low vis-
cosity. In Fig. 5, pink lines correspond to the region where the
radial averaging was calculated for the normalised density profiles.
One can see that PV and 𝑄 approach their local minimum value
at the same positions where the density contrast reaches its local
maximum, which corresponds to the eye of the vortex. With time
several local density maxima developed. Since local minima of po-
tential vortensity developed simultaneously, we can conclude that
the large-scale vortex split into several small-scale vortices.
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Figure 6. The evolution of Σ/Σ0 in ℎ = 0.025, low viscosity (𝛼dze = 10−5),
𝑝 = 1 model assuming disc masses of 𝑀d/𝑀★ = 0.002 (panel a), and
𝑀d/𝑀★ = 0.004 (panel b). In each models Δ𝑟dz is assumed to be 0.95𝐻dz.
It can be seen that the large-scale vortex splits into a two vortices, which
later evolve into a three vortices, see panel a. In a more massive disc (panel
b), the large-scale vortex splits into small-scale (more than three) vortices.

Fig. 6 shows the evolution of the local maximum of the den-
sity contrast varies in time. Panels a and b show the evolution of
the surface mass density contrast (Σ(Φ)/Σ0) in ℎ = 0.025 model
assuming 𝛼dz = 10−5. Panels a and b refer to a low disc-mass of
𝑀d/𝑀★ = 0.002 and 𝑀d/𝑀★ = 0.004 (which is the same model
that is shown in Fig. 5)., respectively. The width of the transition
region was set to 0.95𝐻dz in both cases. After a few hundred orbits
of evolution a full-fledged large scale vortex splits into smaller ones
(see green, yellow and red lines). (blue lines on both panels) tends
to This effect is common in low-, or middle-disc mass models and
low viscosity models. It is appreciable that the azimuthal density
contrast of the small-scale vortices decreases with time, see panel
b. As a result, vortices dissolve and a gas ring forms. Note that the
lifetime of small-scale vortices is longer than our simulation time
in the low mass disc model.

As discussed in Sec. 3, RWI excitation in 𝑝 = 1.5 models was
Δ𝑟dz limited (beyond a certain width of the viscosity transition re-
gion, the disc was RWI stable in the Δ𝑟dz − 𝑀d parameter-space).
This phenomenon also occurred in 𝑝 = 1, ℎ = 0.1 models. Ac-
cording to equation (12), the Toomre 𝑄 is directly proportional to
the local speed of sound. This leads to 𝑄 ∝ ℎ since 𝑐𝑠 = ℎ𝑟Ω.
Therefore, increased ℎ stabilises the disc against gravitational frag-
mentation. Besides, increased ℎ tightens the RWI unstable region
in the Δ𝑟dz − 𝑀d parameter-space (see Figs. A1, A4, and A6).

Fig. 7 shows the initial Toomre𝑄0 parameter for low- and high
disc mass models assuming 𝑝 = 0.5, 1, and 1.5 and the disc aspect
ratio as 0.025, 0.05, and 0.1. It can be seen that in both cases where
ℎ or 𝑝 increases, 𝑄 also raises. This leads to a gravitationally more
stable disc configurations. 𝑄crit = 1/ℎ is also shown, which defines
the critical Q value bellow which the disc self-gravity becomes
important with regards vortex evolution according to (see Lovelace

& Hohlfeld 2013; Yellin-Bergovoy et al. 2016). Thus, increasing ℎ
yields lower 𝑄crit values.

As shown in Fig. 2, three distinct modes of evolution of the
pressure jump are found in this study. Table 2 summarises the three
cases with the corresponding disc parameters. One can see that the
different cases can be separated by the initial value of the Toomre
parameter. Discs with initially small 𝑄 values (𝑄0 ≤ 𝑄crit) cannot
sustain large-scale vortices (see, e.g., Regály & Vorobyov 2017a),
however, long-lived small-scale vortices can be formed, e.g. mostly
in ℎ = 0.025, 𝑝 = 0.5models. This phenomenon can be explained by
that the disc self-gravity suppresses or even prohibits the coagulation
process of small-scale vortices.

In a more massive disc, if 𝑄0 . 1, the disc fragments into
clumps at early stages (a few tenths of orbits). However, in the
following phase, small-scale vortices form but are sustained only
for a few tenths of orbits. Then small-scale vortices tend to dissolve,
forming a ring-shaped gas accumulation. In the subsequent few
tenths of orbits, small-scale vortices reappear, leading to a cycle
of alternating between small-scale vortices and the ring phases in
ℎ = 0.025, 𝑝 = 0.5 middle- and high disc mass models (see,
e.g., Fig. 3). In these cases, the self-gravity of the gas inhibits the
coagulation process of small-scale vortices. Therefore large-scale
vortex cannot be formed.

If 𝑄0 & 𝑄crit, large-scale vortices can form. However, they
tend to split into smaller vortices or elongate and dissipate as they
evolve. This phenomenon can be seen in small disc mass models
(𝑀d/𝑀★ . 0.004). Therefore it is not a result of the disc’s self-
gravity. To explore the effect that causes this phenomenon, further
investigations are needed.

If the growth rate of gas accumulation at the edge of the dead
zone is large, the mass of the gas content in the vortex shifts the
barycentre of the system, which affects the evolution of the disc as
it was shown by Regály & Vorobyov (2017b). Such effects can be
seen, when 𝑝 is set to 0.5 and ℎ is 0.1 or 0.05. In these cases, the
vortex tends to elongate radially due to the effect of the indirect
potential of the disc. As the radial extension of the vortex increases,
the disc starts to wobble around the barycentre, resulting in a highly
eccentric vortex shape.

Fig. 8 shows the disc evolution from the orbital period of 70
to the end of the simulation assuming 𝛼 = 10−4, 𝑝 = 0.5, ℎ = 0.1,
Δ𝑟dz = 0.8𝐻dz, 𝑀d = 0.01𝑀★. The left-hand-side column shows
the fiducial model where both self-gravity and the indirect potential
was taken into account (referred to as SG+IND). In order to explore
the effect of the barycentre shift of the system, we run two addi-
tional test simulations. The middle column of Fig. 8 represents the
evolution of gas with indirect potential (neglecting disc self-gravity,
referred to as IND-ONLY). The right-hand-side column shows the
evolution of gas with self-gravity (without indirect potential, re-
ferred to as SG-ONLY). If the self-gravity is neglected while the
indirect potential is taken into account (IND-ONLYmodel), the disc
becomes elliptical inside the dead zone at an earlier stage than in
the self-gravitating model (SG+IND model). If the indirect term is
not taken into account (SG-ONLY model), the effect of self-gravity
prohibits the formation of a large-scale vortex only a ring-shaped
gas accumulation form. Therefore, we conclude that the indirect
term has a crucial effect on the formation of a large-scale vortex and
its lifetime, especially in a disc with a mass of 0.01𝑀★. The same
conclusion was found by Regály & Vorobyov (2017a).
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Figure 7. The initial Toomre𝑄 parameter in low (𝑀d = 0.001𝑀�) and high (𝑀d = 0.01𝑀�) mass disc models assuming different ℎ and 𝑝 parameters. Panel
a shows ℎ = 0.025 cases, while panel b, and c refer to ℎ = 0.05 and 0.1 cases. Solid and dashed lines show high and low disc mass models, respectively. Blue,
red and green lines correspond to 𝑝 = 0.5, 1 and 1.5 models. Black dotted lines represent the critical Toomre parameter (𝑄crit), beyond which no large-scale
vortex formation was observed. The grey area represents the dead zone edge where RWI excitation occurred.

Table 2. Three types of vortex history. Case I represents those models, in which RWI was not excited. In Case II, large-scale vortex formation was occurred
(𝑚 = 1), while in Case III, the coagulation of small-scale vortices (𝑚 > 1) was suppressed by the disc self-gravity. Here 𝑚 refers to the mode number of
vortices.

RWI excitation 𝑚 disc parameters� remark
Case I 5 · · · 𝑄0 < 𝑄crit, or large Δ𝑟dz · · ·

Case II
a) 3 1 𝑄0 . 𝑄crit in ℎ = 0.025, 𝑝 = 0.5, 1 models short-term∗ vortex
b) 3 1 𝑄0 < 𝑄crit in ℎ = 0.025, 𝑝 = 0.5 models vortex re-formation
c) 3 1 𝑄0 � 𝑄crit in ℎ = 0.025, 𝑝 = 0.5 models long-term† vortex

Case III
a) 3 > 1 𝑄0 & 𝑄crit short-term∗ vortices
b) 3 > 1 𝑄0 > 𝑄crit in 𝛼 = 10−5 models vortex re-formation
c) 3 > 1 𝑄0 � 𝑄crit long-term† vortices

�𝑄0 and 𝑄crit are the initial and the critical values of the Toomre parameter at the distance of the vortex eye, see more details in
Section 4.1
∗Vortex dissipates within the simulation time
†Vortex lasts longer than the simulation time

4.2 Effect of viscosity and disc geometry on the vortex
strength

The Navier-Stokes equations (see equation (2)) that govern the vis-
cous evolution of the gas are dependent on the viscosity. As a result,
low viscosity slows down the evolution and lengthens the lifetime
of vortices. Our results revealed that decreasing the disc aspect ra-
tio also leads to a longer vortex lifetime. This is in agreement with
Tarczay-Nehéz et al. (2020).

We have also shown that large ℎ leads to azimuthally more
elongated, therefore weaker vortices. This is the most pronounced
in the 𝑝 = 1.5 models. This phenomenon can be explained by that
we used a locally isothermal and flat-disc approximation with 𝛼-
prescription. Combining equations (8) and (9) leads to a ∼ ℎ2,
which results that the viscosity of the gas, in some cases, can be
lower in 𝛼 = 10−4 than in an 𝛼dz = 10−5 for sufficiently high values
of ℎ. Namely, the kinematic viscosity in ℎ = 0.1, 𝛼 = 10−5 models
is higher than it is in ℎ = 0.025, 𝛼 = 10−4 ones (see, e.g.. Fig. 10).

As mentioned in Sec. 3, the mode number, 𝑚, depends on
the geometric aspect ratio of the disc, ℎ. This can be explained
by that we assumed locally isothermal 𝛼 discs. As the kinematic
viscosity, a, depends on ℎ2, one can conclude that higher ℎ values
lead to higher viscosities, i.e., smaller mode numbers, see Regály
& Vorobyov (2017a).

As it is mentioned in Section 1, RWI is excited at a vortensity
minimumof a steep pressure gradient (see Lovelace et al. 1999). The
pressure gradient is a function of several parameters such as ℎ, 𝑝, a,
Δ𝑟dz in a locally isothermal 𝛼 disc, see equations (7)-(8) and (11).

Fig. 9 shows anRWI unstable (Δ𝑟dz = 1.1𝐻dz, solid lines) and stable
(Δ𝑟dz = 1.25𝐻dz, dashed lines) low disc mass (𝑀d = 0.001𝑀�)
models for 𝑝 = 1, ℎ = 0.05. One can see that the pressure gradient is
weaker (and the amplitude of the density bump is smaller) in model
where RWI is not excited, than it is in an RWI unstable model.
Note that the pressure maximum is somewhat shifted compared to
the density maximum due to the locally isothermal approximation,
which can be also seen in (figure 5. in Regály et al. 2017).

4.3 Estimation of a critical disc mass

In the following, we present our method to estimate an upper limit
of the disc mass, for which case a large-scale vortex can be formed
assuming a given viscosity transition, disc viscosity and disc geom-
etry.

First, in order to investigate the existence of the vortex, we
defined a threshold (𝐶) at 𝛿Σ ' 1.1. This threshold corresponds to
a variation of 10% in the surface density. Second, we calculated the
maximum value of 𝛿Σ for a given model at each time step. Fig. 11
shows the maximum value of 𝛿Σ at different evolutionary stages
(𝑡 = 250, 450, 650, and 850). The magnitude of the contrast 𝛿Σ is
colour coded in each model. Black coloured boxes represent those
models in which the contrast did not exceed the critical value of
1.1 (below which no RWI excitation was observed). Fig. 11 shows
three different 𝛼dz, ℎ and 𝑝 sets in the 𝑀dz − Δ𝑟dz parameter field.
Panel a and b refer to ℎ = 0.05, 𝑝 = 1 and 𝑝 = 0.5 models in
the low-viscosity case, respectively. Panel c presents the ℎ = 0.05,
𝑝 = 1.5 models assuming 𝛼dz = 10−4.
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Figure 8. The effect of the indirect potential on the evolution of vortices.
Each row refers to the same number of orbits at the distance of the vortex
(from top to bottom: 72, 80, 200, 441, 504, and 563). As a comparison, the
first column refers to the fiducial case (in which self-gravity and the indirect
term are also taken into account, SG+INDmodel), the second column refers
to the case when only the indirect potential is taken into account and self-
gravity is neglected (IND-ONLY). The third column represents when the
indirect term is neglected, but self-gravity is taken into account (SG-ONLY).
In each models, 𝑝 was set to 0.5, while ℎ and 𝛼dz was set to 0.1, and 10−4,
respectively. The width of the transition region, Δ𝑟dz was set to 0.8𝐻dz and
we assumed that the disc mass is 𝑀d = 0.01𝑀★.

Panel a of Fig. 11 represents a typical ℎ − 𝑝 set in which
large-scale vortex formation occurred in all RWI unstable models.
Panel b represents those cases in which large-scale vortex formation
occurred only in small disc mass models. Hence the contrast 𝐶 was
fitted on those models only. Note that for higher disc masses, RWI
was excited, however, the coagulation of small-scale vortices was

Figure 9. The azimuthally averaged and normalised radial profile of Σ
(green lines), gas pressure 𝑃 (blue lines) and the pressure gradient (yellow
lines) in 𝑝 = 1, ℎ = 0.05 low disc mass models (𝑀d = 0.001𝑀�). Solid
line is the RWI unstable case (Δ𝑟dz = 1.1𝐻dz), while dashed line shows the
RWI stable model (Δ𝑟dz = 1.25𝐻dz). Radial profiles for both models are
plotted at 𝑡 = 97th orbits, when RWI is excited in the RWI unstable model.

Figure 10. Radial profile of the kinematic viscosity of the disc in Δ𝑟dz =
0.5𝐻dz models that assume different disc aspect ratios, ℎ. Solid and dashed
lines correspond to 𝛼 = 10−4 and 10−5 models, respectively. It can be seen
that disc geometry has an essential effect on the viscosity, e.g. the viscosity
in ℎ = 0.025, 𝛼 = 10−4 models is lower in the dead zone than that is in
ℎ = 0.1, 𝛼 = 10−5 cases.

suppressed by the disc self-gravity. Panel c represents those models
in which we could not determine the critical disc mass (Δ𝑟dz limited
models).

The RWI unstable and stable models are well-separated in
most cases. The separation can be determined by a linear regression
(see the blue 𝐶 = 1.1 line in Fig. 11). Note that the threshold line
was determined only for those models where a large-scale vortex
formed. Thus, we calculated the intersection of the threshold line
and the abscissa (𝑀d) at each time step. This is an estimated value
of the disc mass (referred as 𝑀est) for which case large-scale vortex
formation could be triggered by assuming a viscosity transition
with infinitesimal width, i.e., Δ𝑟dz = 0𝐻dz. Note that there is a
discontinuity in the viscosity in this case, which is fairly unphysical.
However, it gives a useful estimation for the critical disc mass. 𝑀est
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is an upper limit of the disc mass, for which case a vortex can be
maintained at a given time step.

The steepness of the threshold line evolves with time, hence
𝑀est depends on time. The time evolution of 𝑀est follows an expo-
nential decay to a minimum (saturation) value as

𝑀est (𝑡) = 𝑐1 +
𝑐2

1 + 𝑒𝑐3 ·𝑡
, (14)

where 𝑐1 is the saturation value, 𝑐1 + 𝑐2/2 equals to 𝑀est (𝑡 = 0)
and 𝑐3 is a characteristic time for the lifetime of the vortex. In the
limit of 𝑡 → ∞, equation (14) gives a critical value for the disc mass
(𝑀crit), below which large-scale vortex can be developed.

To calculate𝑀crit, first, we determined 𝑡m=1 phase, where only
a large-scale (𝑚 = 1mode) vortex is present in the disc. Afterwards,
we used a non-linear least squares (NLLS) Marquardt-Levenberg
algorithm to calculate the 𝑐1, 𝑐2 and 𝑐3 parameters (see e.g. Fig. 12).
Summary of the results are shown in Table 3 listing the calculated
𝑀crit values (and the corresponding𝑄0 values at the distance of the
vortex eye) for different model parameters (𝑝, ℎ, 𝛼 and Δ𝑟dz).

The critical disc mass, 𝑀crit, depends on the steepness of the
initial surface density (𝑝), the viscosity (𝛼dz), the width of the
viscosity transition (Δ𝑟dz), and the geometric aspect ratio of the
disc (ℎ). Comparing the second and eighth columns of Table 3, it
can be seen that 𝑀crit was higher in 𝑝 = 1 cases than it was in
𝑝 = 0.5 model. This can be explained by that 𝑀crit is lower in in
𝑝 = 0.5, as was discussed in the previous section.

In general, 𝑀crit is higher in high viscosity models than it is
in low viscosity models. Increasing Δ𝑟dz or ℎ causes lower 𝑀crit.
Comparing ℎ = 0.025 and 0.05 models in 𝑝 = 1 case we found
that 𝑀crit is about ten times higher in ℎ = 0.05 models than it is in
ℎ = 0.025 models.

Assuming an infinitesimally small viscosity transition (Δ𝑟dz =
0𝐻dz), the critical disc mass reaches the lowest value (𝑀crit =

0.0016𝑀�) in 𝛼dz = 10−5, 𝑝 = 0.5, ℎ = 0.05 case. While the
highest value for 𝑀crit was determined in the high viscosity model,
𝛼dz = 10−4, 𝑝 = 1, ℎ = 0.05. In this case, 𝑀crit is more than ten
times higher (i.e. 𝑀crit = 0.0179𝑀�) than it is in the case of the
lowest value.

According to Lovelace & Hohlfeld (2013); Yellin-Bergovoy
et al. (2016), the self-gravity is important in discs with assuming
𝑄crit = 1/ℎ. In discs assuming ℎ = 0.025, 𝑄crit = 40, while in
ℎ = 0.05 discs 𝑄crit = 20. Table 3 contains the corresponding
𝑄0 values for the calculated 𝑀crit values at the distance of the
vortex eye. It can be seen that, assuming sharp viscosity transitions,
the corresponding 𝑄0 values for the estimated 𝑀crit values are
close to 𝑄crit. In the case of an infinitesimally small transition
(Δ𝑟dz = 0𝐻dz) in ℎ = 0.05 models 𝑄0 ∼ 14 − 18. In ℎ = 0.025
models 𝑄0 ∼ 60 − 70 (assuming Δ𝑟dz = 0𝐻dz), which is higher
than 𝑄crit. This is consistent with the previous work of Regály
& Vorobyov (2017a), who found that self-gravity could affect the
formation of large-scale vortices in 𝑄0 > 𝑄crit discs (e.g. 𝑄0 = 50
in a canonical disc, assuming ℎ = 0.05).

We could not determine the critical disc mass in the follow-
ing cases. RWI excitation in 𝑝 = 1.5 models are Δ𝑟dz limited in
the Δ𝑟dz − 𝑀d rather than disc mas limited (in the investigated
mass range). In these models, the disc is stable against gravitational
fragmentation, e.g. 𝑄0 = 220.89 even for the highest disc mass,
assuming ℎ = 0.05. Note that in 𝑝 = 1.5 models, 𝑄 remains high
throughout the simulation. This means that disc self-gravity can-
not suppress large-scale vortex formation with the investigated disc
mass range. Hence, 𝑀crit is far beyond the investigated disc range
in these models, which is beyond the scope of this investigation.

The coagulation of small-scale vortices did not occur in 𝑝 =

0.5, ℎ = 0.025 models. Moreover, in 𝑝 = 0.5, ℎ = 0.1 models,
the disc becomes highly eccentric. This can be explained by that
the mass of the accumulated gas becomes sufficiently high that
the barycentre of the star-disc system shifts. Due to the indirect
potential, the disc tends to wobble around the barycentre, which
leads to a highly eccentric disc, which is finally disrupted within
the time span of our simulation. The effect of self-gravity and the
indirect potential on the long-termevolution of the large-scale vortex
and the disruption of the disc is shown in Fig. 3.

5 CONCLUSION

In this study, we investigated the long-term evolution of vortices
formed via RWI excitation at the outer edge of the dead zone in
locally isothermal, self-gravitating protoplanetary discs. We per-
formed 1980 2D hydrodynamic simulations in high- and low vis-
cosity regimes (𝛼dz = 10−4 and 10−5). We investigated the effect
of disc mass being in the range of 𝑀d/𝑀★ = 0.01 − 0.001. We
run models assuming three different disc aspect ratios (ℎ = 0.025,
0.05, and 0.1 in flat disc approximation), three initial surface density
slopes (𝑝 = 0.5, 1 and 1.5). The width of the viscosity transition
region was assumed to be in the range of 0.5 − 2𝐻dz. All investi-
gated disc parameters are listed in Table 1. In our models, the inner
and outer boundaries of the disc were set to 3 and 50AU with a
resolution of 256 logarithmic radial and 512 azimuthal grid cells.

Based on the simulations, we estimated a critical disc mass,
below which the formation of large-scale vortices is allowed. Be-
yond this critical disc mass, the effect of disc self-gravity slows
or even suppresses the coagulation process of small-scale vortices,
hence prevents the formation of a large-scale vortex. Table 3 shows
the critical values for the disc mass (and the corresponding initial
𝑄0 values) in models where it could be derived. Our main findings
are the followings:

1) In low viscosity models, RWI excitation can be triggered
at wider viscosity transition regions than in high viscosity models.
Comparing to high viscosity models, the critical Δ𝑟dz below which
RWI can be excited is 0.3𝐻dz wider in low viscosity models if the
disc aspect ratio is ℎ = 0.025 or 0.05. However, for ℎ = 0.1 mod-
els, the critical transition width is 0.15𝐻dz wider in low viscosity
models.

2) Low ℎ (hence low viscosity) and low 𝑝 values tend to
increase the initial mode number,𝑚, and slow down the coagulation
of small-scale vortices. Contrary, increasing ℎ and 𝑝 enhance the
formation of large-scale vortices.

3) Vortex oscillation (break up followed by re-formation of
the vortex) is common in low viscosity ℎ = 0.05 models assuming
𝑝 = 1 or 1.5. In these cases, the lifetime of the reappeared large-scale
vortex larger than the simulation time.

4) Vortex splitting (large-scale vortices tend to break up into
smaller ones) frequently occurs in 𝑝 = 1, ℎ = 0.025 models assum-
ing low disc masses.

5) The critical disc mass, below which large-scale vortex for-
mation occurred, was calculated for three different ℎ − 𝑝 sets: i) in
low disc mass models in ℎ = 0.05, 𝑝 = 0.5, ii) ℎ = 0.025, 𝑝 = 1,
and iii) ℎ = 0.05, 𝑝 = 1models (see Table 3). In general, the critical
disc mass is found to be in the order of 0.0016 − 0.012𝑀� . The
corresponding 𝑄0 values are ∼ 15 − 70, which depends on Δ𝑟dz,
ℎ, 𝑝. For an infinitesimally thin viscosity transition (Δ𝑟dz = 0𝐻dz),
𝑄0 & 𝑄crit at the distance of the vortex eye, where 𝑄crit = 1/ℎ.
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Figure 11. The evolution of the contrast, 𝐶, as a function of Δ𝑟dz and 𝑀d. Four different evolutionary stages (𝑡 = 250, 450, 650, and 850 orbits) are shown.
Panel a shows 𝑝 = 1, 𝛼 = 10−5 models. Panel b shows 𝑝 = 0.5, 𝛼 = 10−5 models, while panel c corresponds to 𝑝 = 1.5, 𝛼 = 10−4 models. The geometric
aspect ratio, ℎ, was assumed to be 0.05 in each models. It can be seen that the 𝐶 = 1.1 threshold line (blue line) gets steeper in time, see the time evolution
from left to right on panels a and b. On panels b, 𝐶 is only fitted for large-scale vortices. Panels c shows Δ𝑟dz limited cases, thus we were not able to estimate
the critical disc mass 𝑀crit, see explanation in the text.

Figure 12. Estimation of 𝑀crit assuming three different viscosity transition width for ℎ = 0.05, 𝛼 = 10−4, 𝑝 = 1 models. Values for 𝑀crit are calculated in
each time-step after the large-scale vortex has been developed. Note that the zero point of 𝑋 -axis corresponds to the phase of the formation of the large-scale
vortex. Panel a shows a model, in which the region of viscosity transition is infinitesimally thin, Δ𝑟dz = 0𝐻dz. Panels b, and c present Δ𝑟dz = 0.5 and 1𝐻dz
models. Blue coloured region corresponds to the mass range, in which the lifetime of the large-scale vortex was longer than the simulation time. The dashed line
indicates the critical mass, 𝑀crit, while the red area shows the mass range in which the large-scale vortex dissolves within simulation time. No RWI excitation,
thus no vortex formation occurred in the white regions.
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Table 3. Estimated critical mass for large-scale vortex formation with the corresponding 𝑄0 values at the distance of the vortex eye.

𝑝 = 0.5 𝑝 = 1

Δ𝑟dz
𝑀crit,h=0.05 [𝑀�] 𝑀crit,h=0.025 [𝑀�] 𝑀crit,h=0.05 [𝑀�]

[H] 𝛼dz = 10−4 𝑄0 𝛼dz = 10−5 𝑄0 𝛼dz = 10−4 𝑄0 𝛼dz = 10−5 𝑄0 𝛼dz = 10−4 𝑄0 𝛼dz = 10−5 𝑄0

0 0.0019 15.32 0.0016 18.19 0.0020 62.50 0.0018 69.44 0.0179 13.97 0.0176 14.21

0.5 0.0013 22.39 0.0011 26.46 0.0018 69.44 0.0015 83.33 0.0128 11.64 0.0125 20.00
0.65 0.0011 26.46 0.0010 29.10 0.0017 73.53 0.0014 89.29 0.0104 24.04 0.0109 22.93
0.8 0.0008 36.38 0.0009 32.34 0.0015 83.33 0.0013 96.15 0.0079 31.65 0.0099 25.25
0.95 0.0006 48.50 0.0007 41.57 0.0014 89.29 0.0012 104.17 0.0053 47.17 0.0079 31.65
1.1 0.0004 72.76 0.0006 48.50 0.0012 104.17 0.0011 113.64 0.0025 100.00 0.0059 42.37
1.25 0.0001 291.02 0.0005 58.76 0.0010 125.00 0.0010 125.00 5 5 0.0038 65.79
1.4 5 5 0.0004 72.76 0.0008 156.25 0.0009 138.89 5 5 0.0010 250.00
1.55 5 5 0.0003 97.07 5 5 0.0007 178.57 5 5 5 5

1.7 5 5 0.0002 145.51 5 5 0.0006 208.33 5 5 5 5

1.85 5 5 5 5 5 5 0.0004 312.50 5 5 5 5

2 5 5 5 5 5 5 0.0002 625.00 5 5 5 5

This is consistent with the previous works of Lovelace & Hohlfeld
(2013); Yellin-Bergovoy et al. (2016); Regály & Vorobyov (2017a).

6)Ring-like structures develop in the gas for ℎ = 0.025, 𝑝 = 0.5
models, assuming high disc masses (𝑀d/𝑀★ & 0.006𝑀�), which
resemble the structures that were found by the DSHARP project
(see e.g. Dullemond et al. 2018). The ring becomes RWI unstable
after a few tenths or hundreds of orbits. However, due to the disc
self-gravity, the coagulation of small-scale vortices are prevented.
At later epochs, an oscillation between the ring-like structure and
small-scale vortices was found (see, e.g., Fig. 3).

Here we have to mention some caveats of our models whose
resolution requires further investigations. We assumed a locally
isothermal disc approximation. This assumption can provide a good
approximation as long as the thermal heating and cooling processes
are rapid. Pierens & Lin (2018) and Tarczay-Nehéz et al. (2020)
showed that disc thermodynamics affect vortex strength and life-
time. Thus, in order to explore vortex evolution, the lifetime with
different physical parameters, and the critical mass of the disc, fur-
ther investigations, including disc thermodynamics, are needed.

In order to investigate the effect of the width of the transition
region at the edge of the outer dead zone on the evolution of large-
scale vortices, we used a static model of the dead zone (i.e., 𝛼-
prescription with a fixed distance of the transition region). This way,
in the locally isothermal approximation, the viscosity depends only
on the distance and the 𝛼-parameter. However, in a more realistic
model, the viscosity of the gas is dependent on the surface density
of the gas. To investigate the effect of a surface density dependence
of the viscosity of the gas, this effect is also needed to be included
in our model for further investigations.

We could not estimate 𝑀crit in those models in which large-
scale vortex formation not occurs. 𝑀crit could not be calculated
either in those models, in which the disc becomes eccentric, or𝑀crit
is far beyond the investigated disc mass range. The latter occurs
in models, where the Toomre 𝑄 remains high during the whole
simulation (𝑝 = 1.5 models). Hence, to estimate 𝑀crit in 𝑝 = 1.5
models, the investigated disc mass range needs to be extended in a
future study. Note that, according to Ono et al. (2016), the threshold
of 10% variation of the surface density with respect to the initial one
gives us an upper bound estimate of 𝑀crit. To give a more realistic
restriction of the critical disc mass, investigating the circumstances
of the excitation of RWI would be needed in a further study, i.e.,

defining the amplitude of the critical surface density variation, that
is required to the excitation of RWI.

We used two-dimensional, thin disc approximation, while the
theoretical work of Lesur & Papaloizou (2009) revealed vortex for-
mation in three dimensions face the problem of elliptical instability,
which can destroy vortices with 𝜒dens < 4. Hence, to investigate
the effect of different disc parameters on the critical disc mass, fur-
ther investigations in three dimensions are needed. Note, however,
that disc self-gravity implies enormous computational difficulties
in three dimension.

To summary, we conclude that long-lived, large-scale vortex
formation, at the outer edge of the dead zone, favours 𝑄0 to be
orders of magnitudes higher than 𝑄crit. In 𝑝 = 0.5, ℎ = 0.05 and
𝑝 = 1, ℎ = 0.025 models, the critical disc mass is ∼ 0.0016 −
0.002𝑀� . Above this disc mass, large-scale vortex formation is
suppressed by the self-gravity of the disc. In 𝑝 = 1, ℎ = 0.05
models, the critical disc mass is ∼ 10 times larger than in the
previous two cases (𝑝 = 0.5, ℎ = 0.05 and 𝑝 = 1, ℎ = 0.025
models), see Table 3. Although, RWI can be excited if the initial
value of 𝑄 is close to 𝑄crit, large-scale vortices break up into small
ones in ℎ = 0.025, 𝑝 = 1 models for 𝑀d/𝑀★ . 0.004𝑀� disc-
masses. If the initial 𝑄 is below 𝑄crit, only small-scale vortices
form in an RWI unstable disc, which cannot be merged into one
single vortex (e.g. in ℎ = 0.025, 𝑝 = 1 models for 𝑀d/𝑀★ .
0.003𝑀� disc-masses. We conclude that long-lived, large scale-
vortex formation, therefore a hypothetical vortex-aided formation of
planets, favours discswith𝑄0 � 𝑄crit.Moreover, large-scale vortex
formation favours low disc masses and low kinematic viscosity,
which conditions are fulfilled in transition discs. Thus, the presence
of a large-scale vortex could be an indication to the lifetime of the
disc, i.e., they might be more common in transition discs (see, e.g.,
Regály et al. 2012).
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We provide additional figures presenting the evolution of ΔΣ for
𝛼dze = 10−5, ℎ, 𝑝 data-sets, similar to Fig. 4, in the online supple-
mentary material.
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Figure A1. Evolution of 𝛿Σ in ℎ = 0.025, 𝑝 = 0.5, 𝛼 = 10−4 models. The width of the transition region, and the disc mass increase from left to right and top
to bottom, respectively.
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Figure A2. Evolution of 𝛿Σ in ℎ = 0.025, 𝑝 = 1, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right
and from top to bottom, respectively.

Figure A3. Evolution of 𝛿Σ in ℎ = 0.025, 𝑝 = 1.5, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right
and from top to bottom, respectively.
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Figure A4. Evolution of 𝛿Σ in ℎ = 0.05, 𝑝 = 0.5 models, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left
to right and from top to bottom, respectively.

Figure A5. Evolution of 𝛿Σ in ℎ = 0.05, 𝑝 = 1.5, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right
and from top to bottom, respectively.
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Figure A6. Evolution of 𝛿Σ in ℎ = 0.1, 𝑝 = 0.5, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right
and from top to bottom, respectively.

Figure A7. Evolution of 𝛿Σ in ℎ = 0.1, 𝑝 = 1, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right and
from top to bottom, respectively.
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Figure A8. Evolution of 𝛿Σ in ℎ = 0.1, 𝑝 = 1.5, 𝛼 = 10−4 models. The width of the transition region widens, and the disc mass increases from left to right
and from top to bottom, respectively.
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