2,053 research outputs found

    Deep learning based pulse shape discrimination for germanium detectors

    Full text link
    Experiments searching for rare processes like neutrinoless double beta decay heavily rely on the identification of background events to reduce their background level and increase their sensitivity. We present a novel machine learning based method to recognize one of the most abundant classes of background events in these experiments. By combining a neural network for feature extraction with a smaller classification network, our method can be trained with only a small number of labeled events. To validate our method, we use signals from a broad-energy germanium detector irradiated with a 228^{228}Th gamma source. We find that it matches the performance of state-of-the-art algorithms commonly used for this detector type. However, it requires less tuning and calibration and shows potential to identify certain types of background events missed by other methods.Comment: Published in Eur. Phys. J. C. 9 pages, 10 figures, 3 table

    Genotoxikus hatásra bekövetkező funkcionális és strukturális DNS változások = Functional and structural changes in DNA upon genotoxic effects

    Get PDF
    Morfológiai és biokémiai vizsgálataink arra utalnak, hogy a a genotoxikus hatások kategorizálhatók az okozott kromatin változások alapján. A kemotoxikus változások potenciális diagnosztikus jelentősége miatt vizsgáltuk a nehézfémek (elsősosrban kadmium) (Banfalvi et al., 2005), a gamma sugárzás (Nagy et al., 2004), az UVB sugárzás (Ujvárosi et al., 2007) és a carcinogén (dimetilnitrózamin) hatására bekövetkező kromatin változásokat (Trencsényi et al., 2007). Kadmium kezelés jellegzetes szakadásokat és nagy lyukakat hozott létre a sejtmagban. A gamma sugárzás preapoptotikus hatására: a. a sejtek és sejtmagok mérete megnőtt, b. DNA tartalmuk a sejtciklus minden szakaszában kisebb volt a normál kezeletlen populációhoz képest, c. a sejtciklus a korai S fázisban leállt (2,4 C értéknél), d. a kromatin kondenzálás annak fibrilláris szakaszában akadt el, e. az apoptotikus testek száma és nagysága a sejtciklus haladásávalfordítva arányos: sok apró apoptotikus testtel az S fázis elején és kevés nagy apoptotikus testtel az S fázis végén. A CHO sejtekben mért vizsgálatokat humán K562 sejteken megerősítettük. UVB sugárzás hatására a kromoszómák nem voltak láthatók, a sérülés hatására vékony összefüggő kromatin fátyol vonta be mind az interfázisos, mind a metafázisos kromoszómákat. | Morphological and biochemical studies after genotoxic treatments suggest that the consequences of various chromatin injuries can be categorized based on the assessment of injury-specific chromatin changes. Due to its diagnostic significance, we have started to determine and systematize the effects of heavy metals, primarily cadmium treatment (Banfalvi et al., 2005), gamma irradiation (Nagy et al., 2004) and UV irradiation (Ujvarosi et al., 2007). After cadmium treatment and have seen the same large extensive disruptions and holes in the nuclear membrane and sticky incompletely folded chromosomes typical for cadmium treatment (Nagy et al., 2004; Banfalvi et al., 2007). Preapoptotic changes upon γ-irradiation manifested as: (a) The cellular and nuclear sizes increased. (b) The DNA content was lower in each elutriated subpopulation of cells. (c) The progression of the cell cycle was arrested in the early S phase at 2.4 C value. (d) The chromatin condensation was blocked at its fibrillary stage. (e) The number and size of apoptotic bodies were inversely correlated with the progression of the cell cycle, with many small apoptotic bodies in early S phase and less but larger apoptotic bodies in late S phase (Nagy et al., 2004). Similar observations were made in K562 cells (Banfalvi et al., 2007). UV irradiation blocked chromatin condensation at its fibrillary stage, nuclear structures were blurred and covered with fibrillary chromatin, neither interphase nor metaphase chromosomes were visible

    Experimental study of 199Hg spin anti-relaxation coatings

    Full text link
    We report on a comparison of spin relaxation rates in a 199^{199}Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.Comment: 9 pages, 6 figures, submitted to JINS

    Oscillating ultra-cold neutron spectrometer

    Get PDF
    The energy spectrum of ultra-cold neutrons (UCN) is very often a key point to determine the systematic effects in precision measurements utilizing UCN. The proposed novel method allows the in-situ measurements of the UCN velocity distribution and its time evolution. In addition, the proposed UCN spectrometer can be a handy diagnostic tool for monitoring the UCN spectrum in critical places in the transport system connecting an UCN source with experiments. In this paper, we present the preliminary results from measurements and simulations using the oscillating UCN spectrometer at the PSI UCN source

    Comparison of ultracold neutron sources for fundamental physics measurements

    Full text link
    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.Comment: 20 pages, 30 Figure

    Improved method for the identification of the fluoride-resistant plasmacholinesterase genotypes

    Full text link
    This investigation was prompted by the findings that (1) dibucaine-resistant homozygotes and heterozygotes for plasmacholinesterase also exhibit resistance to fluoride inhibition, (2) the differentiation of dibucaine-resistant from the fluoride-resistant genotypes is ambiguous with the method of Harris and Whittaker, (3) the plasmacholinesterase inhibition by Na fluoride (FN) is markedly influenced by the temperature. Therefore, we modified their method by increasing (1) the temperature of the reaction from 25C to 37C and (2) the concentration of Na fluoride from 5.0×10 −5 m to 2.5×10 −4 m . With this method, genetically normal individuals have a mean FN± sd =77.0±3.22 while atypical dibucaine-resistant homozygotes have a mean FN± sd =43.0±10.0 and atypical dibucaine-resistant heterozygotes 67.0±5.37. Since a linear correlation was observed between DN and FN by our new method, a fluoride number 2 sd lower than the predicted FN from the DN can distinctly identify the fluoride-resistant plasmacholinesterase genotype E 1 f .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44136/1/10528_2004_Article_BF00500119.pd

    Solid deuterium surface degradation at ultracold neutron sources

    Full text link
    Solid deuterium (sD_2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD_2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment (`conditioning') of the sD_2. We show that, in addition to the quality of the bulk sD_2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D_2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD_2 frost formation on initially transparent sD_2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.Comment: 15 pages, 22 figures, accepted by EPJ-
    corecore