172 research outputs found

    The role of local and global strangeness neutrality at the inhomogeneous freeze-out in relativistic heavy ion collisions

    Get PDF
    The decoupling surface in relativistic heavy-ion collisions may not be homogeneous. Rather, inhomogeneities should form when a rapid transition from high to low entropy density occurs. We analyze the hadron "chemistry" from high-energy heavy-ion reactions for the presence of such density inhomogeneities. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potential such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities and the role of local and global strangeness neutrality.Comment: 8 pages, 6 figures, To appear in proceedings of the workshop on 'Particle Correlations and Femtoscopy' September 9-11, 2006, Sao Paulo, Brazi

    Inhomogeneous freeze-out in relativistic heavy-ion collisions

    Full text link
    A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potential such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.Comment: 8 pages, 5 figure

    Impact of baryon resonances on the chiral phase transition at finite temperature and density

    Get PDF
    We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approximation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.Comment: 18 pages, 7 figure

    Phase Structure in a Hadronic Chiral Model

    Full text link
    We study the phase diagram of a hadronic chiral flavor-SU(3) model. Heavy baryon resonances can induce a phase structure that matches current results from lattice-QCD calculations at finite temperature and baryon density. Furthermore, we determine trajectories of constant entropy per net baryon in the phase diagram.Comment: 4 pages, 5 figure

    In-medium vector meson masses in a Chiral SU(3) model

    Get PDF
    A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the effects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation effects from the nucleon sector and is not observed in the mean field approximation.Comment: 26 pages including 10 figures; the text has been modified for clarit

    Critical Review Of Quark Gluon Plasma Signals

    Get PDF
    Compelling evidence for a new form of matter has been claimed to be formed in Pb+Pb collisions at SPS. We critically review two suggested signatures for this new state of matter: First the suppression of the J/Κ\Psi, which should be strongly suppressed in the QGP by two different mechanisms, the color-screening and the QCD-photoeffect. Secondly the measured particle, in particular strange hadronic, ratios might signal the freeze-out from a quark-gluon phase.Comment: 7 pages 6 figures, Contribution to the Proceedings of CRIS 2000, 3rd Catania Relativistic Ion Studies, Acicastello, Italy, May 22-26, 200

    Effects of Dirac sea polarization on hadronic properties - A chiral SU(3) approach

    Get PDF
    The effect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The effect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This effect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange (σ)(\sigma) and the strange (ζ)(\zeta) scalar fields.Comment: 25 pages including 13 figures,figure styles modified,few clarifying sentences added in text, to appear in Phys. Rev.
    • 

    corecore