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Effects of Dirac sea polarization on hadronic properties
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Abstract

The effect of vacuum fluctuations on the in-medium hadronic properties is investigated using

a chiral SU(3) model in the nonlinear realization. The effect of the baryon Dirac sea is seen to

modify hadronic properties and in contrast to a calculation in mean field approximation it is seen

to give rise to a significant drop of the vector meson masses in hot and dense matter. This effect is

taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree

approximation (RHA), where the baryon self energy is modified due to interactions with both the

non-strange (σ) and the strange (ζ) scalar fields.
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1. INTRODUCTION

The study of hot and dense matter is an important problem in strong interaction

physics. In recent times there have been numerous experimental investigations , e.g.

in the context of relativistic heavy ion collision experiments, to study how hadronic

matter is modified under extreme conditions of high temperatures and/or densities

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The experimental observables from

relativistic heavy ion collision are related to the medium modifications of the hadrons in

the dynamically evolving strongly interacting matter (fireball) resulting from the nuclear

collision. One of the explanations of the observed enhanced dilepton production in the low

invariant mass regime is the medium modification of the vector mesons [1, 2, 3]. It was

first conjectured to be a simple scaling law for the vector meson masses in the medium [6].

There have been also QCD sum rule calculations for studying the in-medium vector meson

properties [8, 9, 10, 11]. In the Quantum Hadrodynamics framework [16], the vector meson

masses were shown to have dominant contributions from the nucleon Dirac sea. The vector

meson masses have very insignificant modifications in the hot and dense medium, when the

contributions only from the Fermi sea are taken into account [17, 18, 19, 20, 21]. Recently,

it was shown in a chiral SU(3) model [23, 24], that the Dirac sea polarization leads to a

significant drop of vector meson masses in nuclear matter [25]. In the present investigation,

we study the properties of hadrons in the hot hyperonic matter, taking into account the

effects of the Dirac sea polarization [26, 27, 28].

We organize the paper as follows. In the section 2, we briefly recapitulate the SU(3)

chiral model used in the present investigation. In section 3, we outline the mean field

approximation for the study of hadronic properties. Section 4 discusses the inclusion of

vacuum polarization effects using RHA. This is done by summing over the baryonic tadpole

diagrams which includes couplings to both the nonstrange (σ) and strange (ζ) scalar meson

fields. In section 5 we discuss the medium modification of the vector meson masses due

to their interaction with the baryons in the hot hadronic matter. The effect of vacuum

polarization compared to the mean field approximation is studied. We discuss the results of

the present investigation in section 6. Finally, in section 7, we summarize our findings and

discuss possible improvements of the current approach.
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2. THE HADRONIC CHIRAL SU(3) × SU(3) MODEL

In this section the various terms of the Lagrangian

L = Lkin +
∑

W=X,Y,V,A,u

LBW + LV P + Lvec + L0 + LSB (1)

are discussed. The calculation is done within the framework of a relativistic quantum field

theoretical model of baryons and mesons built on chiral symmetry and broken scale invari-

ance [23] to describe strongly interacting nuclear matter. We adopt a nonlinear realization

of the chiral symmetry which allows a simultaneous description of hyperon potentials and

properties of finite nuclei [22, 23, 24]. This Lagrangian contains the baryon octet, the spin-0

and spin-1 meson multiplets as degrees of freedom.

Lkin is the kinetic energy term, LBW contains the baryon-meson interactions in which the

baryon-spin-0 meson interaction terms generate the baryon masses. LV P describes the inter-

actions of vector mesons with the pseudoscalar mesons (and with photons). Lvec describes

the dynamical mass generation of the vector mesons through coupling to the scalar fields and

contains additionally quartic self-interactions of the vector fields. L0 are the meson-meson

interaction terms inducing the spontaneous breaking of chiral symmetry. It also includes a

scale invariance breaking logarithmic potential. LSB describes the explicit symmetry break-

ing of U(1)A, SU(3)V and the chiral symmetry.

2.1. The kinetic energy terms

An important property of the nonlinear realization of chiral symmetry is that all terms

of the model-Lagrangian only have to be invariant under the SU(3)V transformation in

order to ensure chiral symmetry. This vector transformation depends in general on the

pseudoscalar mesons and thus is local. Covariant derivatives have to be introduced for the

kinetic terms in order to preserve chiral invariance [23]. The covariant derivative used in this

case, reads: Dµ = ∂µ + [Γµ, ] with Γµ = − i
2
[u†∂µu + u∂µu

†] where u = exp

[

i
σ0

πaλaγ5

]

is

the unitary transformation operator [23]. The pseudoscalar mesons are given as parameters

of the symmetry transformation.

In summary, the kinetic energy terms read [23]

Lkin = iTrBγµD
µB +

1

2
TrDµXD

µX + Tr(uµXu
µX +Xuµu

µX) +
1

2
TrDµY D

µY

+
1

2
DµχD

µχ− 1

4
Tr
(

Ṽµν Ṽ
µν
)

− 1

4
Tr (FµνF

µν) − 1

4
Tr (AµνAµν) . (2)

B denotes the baryon octet, X the scalar meson multiplet, Y the pseudoscalar chiral singlet,

Ṽ µ (Aµ) the renormalised vector (axial vector) meson multiplet with the field strength tensor
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Ṽµν = ∂µṼν − ∂νṼµ (Aµν = ∂µAν − ∂νAµ). Fµν is the electro-magnetic field tensor and χ is

the scalar, iso-scalar dilaton (glueball) -field.

2.2. Baryon-meson interaction

Except for the difference in Lorentz indices, the SU(3) structure of the spin-1/2 baryon

-meson interaction terms are the same for all mesons. This interaction for a general meson

field W has the form

LBW = −
√

2gW
8

(

αW [BOBW ]F + (1 − αW )[BOBW ]D
)

− gW
1

1√
3
Tr(BOB)TrW , (3)

with [BOBW ]F := Tr(BOWB − BOBW ) and [BOBW ]D := Tr(BOWB + BOBW ) −
2
3
Tr(BOB)TrW . The different terms to be considered are those for the interaction of baryons

with scalar mesons (W = X,O = 1), with vector mesons (W = Ṽµ,O = γµ for the vector

and W = Ṽµν ,O = σµν for the tensor interaction), with axial vector mesons (W = Aµ,O =

γµγ5) and with pseudoscalar mesons (W = uµ,O = γµγ5), respectively. For the current

investigation the following interactions are relevant.

2.2.1. Baryon-scalar meson interaction

This is the term generating the baryon masses through coupling of the baryons to the

non-strange σ(∼ 〈ūu + d̄d〉) and the strange ζ(∼ 〈s̄s〉) scalar quark condensate [23]. After

insertion of the scalar meson matrix X, one obtains the baryon masses

mN = m0 −
1

3
gS
8 (4αS − 1)(

√
2ζ − σ),

mΛ = m0 −
2

3
gS
8 (αS − 1)(

√
2ζ − σ),

mΣ = m0 +
2

3
gS
8 (αS − 1)(

√
2ζ − σ), (4)

mΞ = m0 +
1

3
gS
8 (2αS + 1)(

√
2ζ − σ),

with m0 = gS
1 (
√

2σ + ζ)/
√

3. The parameters gS
1 , g

S
8 and αS can be used to fix the baryon

masses to their experimentally measured vacuum values. It should be emphasized that the

nucleon mass also depends on the strange condensate ζ . This general case will be used in the

present investigation, to study hot and strange hadronic matter. Recently the vector meson

masses were investigated in nuclear matter[25], for the situation αS = 1 and gS
1 =

√
6gS

8 ,

where the nucleon mass depends only on the non-strange quark condensate [23, 25].

The effect of including RHA is similar to the results obtained in the Walecka model [17, 26].
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In the present investigation, however, in the summing over baryon tadpoles the effects of

coupling of baryons to both scalar fields (σ and ζ) have to be taken into account for the

baryonic Dirac sea in RHA.

2.2.2. Baryon-vector meson interaction

In analogy to the baryon-scalar meson coupling there exist two independent baryon-

vector meson interaction terms corresponding to the F-type (antisymmetric) and D-type

(symmetric) couplings. Here we will use the symmetric coupling because from the uni-

versality principle [29] and the vector meson dominance model one can conclude that the

antisymmetric coupling should be small. We realize this assumption by setting αV = 1 for

all fits. Additionally we decouple the strange vector field φµ ∼ s̄γµs from the nucleon by

setting gV
1 =

√
6gV

8 and the remaining baryon-vector meson interaction reads

LBV = −
√

2gV
8

{

[B̄γµBV
µ]F + Tr(B̄γµB)TrV µ

}

. (5)

Note that in this limit all coupling constants are fixed once gV
8 is specified [23]. This is

done by fitting the nucleon-ω coupling to the energy density at nuclear matter saturation

(E/A = −16 MeV). With the above choice, the vector meson- baryon couplings reduce to

those from the additive quark model given as

gΛω =
2

3
gNω = gΣω = 2gΞω

gΛφ = −
√

2

3
gNω = gΣφ = 2gΞφ (6)

2.3. Meson-meson interaction

2.3.1. Spin-0 potential

The Lagrangian describing the interaction for the scalar mesons, X, and pseudoscalar

singlet, Y , is given as [23]

L0 = −1

2
k0χ

2I2 + k1(I2)
2 + k2I4 + 2k3χI3, (7)

with I2 = Tr(X + iY )2, I3 = det(X + iY ) and I4 = Tr(X + iY )4. The scalar glueball field χ

is introduced to satisfy the QCD trace anomaly i.e. nonvanishing energy-momentum tensor

Θµ
µ = (βQCD/2g)〈Ga

µνG
a,µν〉, where Ga

µν is the gluon field tensor.

A scale breaking potential [33]

Lscalebreak = −1

4
χ4 ln

χ4

χ4
0

+
δ

3
χ4 ln

I3
det〈X〉0

(8)
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is introduced. This yields

θµ
µ = 4L − χ

∂L
∂χ

− 2∂µχ
∂L

∂(∂µχ)
= χ4 (9)

and allows for the identification of the χ field width the gluon condensate Θµ
µ = (1− δ)θµ

µ =

(1 − δ)χ4. Finally the term Lχ = −k4χ
4 generates a phenomenologically consistent finite

vacuum expectation value. We shall use the frozen glueball approximation i.e. assume

χ = 〈0|χ|0〉 ≡ χ0, since the variation of χ in the medium is rather small [23].

2.3.2. Vector mesons masses

The Lagrangian for the vector meson interaction is written as [30, 31, 32]

Lvec =
1

2
m2

V

χ2

χ2
0

Tr(ṼµṼ
µ) +

1

4
µTr(Ṽµν Ṽ

µνX2) (10)

+
1

12
λV

(

Tr(Ṽ µν)
)2

+ 2(g̃4)
4Tr(ṼµṼ

µ)2 .

The vector meson fields, Ṽµ are related to the renormalized fields by Vµ =

Z
1/2
V Ṽµ with V = ω, ρ, φ [25]. The masses of ω, ρ and φ are fitted by tuning mV , µ

and λV . The vector meson masses have contributions from the quartic self-interaction, and

we get in the frozen glueball approximation

m∗
ω

2 = m2
ω + 12g4

4ω
2 ,

m∗
ρ
2 = m2

ρ + 12g4
4

Zρ

Zω
ω2 , (11)

m∗
φ
2 = m2

φ + 24g4
4

Z2
φ

Z2
ω

φ2 ,

with g4 =
√
Zωg̃4 as the renormalized coupling. Since the quartic vector-interaction con-

tributes only in the medium, the coupling g4 cannot be unambiguously fixed. It is fitted,

so that the compressibility lies in the desired region between 200 − 300 MeV in the mean

field approximation. Note that the N − ω as well as the N − ρ - couplings are also affected

by the redefinition of the fields with the corresponding renormalised coupling constants as

gNω ≡ 3g8
V

√
Zω and gNρ ≡ g8

V

√

Zρ.

2.4. Explicit chiral symmetry breaking

The explicit symmetry breaking term is given as [23]

LSB = TrAp

(

u(X + iY )u+ u†(X − iY )u†
)

(12)
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with Ap = 1/
√

2diag(m2
πfπ, m

2
πfπ, 2m

2
KfK −m2

πfπ) and mπ = 139 MeV, mK = 498 MeV.

This choice for Ap together with the constraints σ0 = −fπ , ζ0 = − 1√
2
(2fK−fπ), for the VEV

on the scalar condensates assure that the PCAC-relations of the pion and kaon are fulfilled.

With fπ = 93.3 MeV and fK = 122 MeV we obtain |σ0| = 93.3 MeV and |ζ0| = 106.56 MeV.

3. THE MEAN FIELD APPROXIMATION

The Lagrangian density in the mean field approximation [23] consists of the following

terms

LBX + LBV = −
∑

i

ψi [giωγ0ω + giφγ0φ+m∗
i ]ψi (13)

Lvec =
1

2
m2

ω

χ2

χ2
0

ω2 + g4
4ω

4 +
1

2
m2

φ

χ2

χ2
0

φ2 + g4
4

(

Zφ

Zω

)2

φ4 (14)

V0 =
1

2
k0χ

2(σ2 + ζ2) − k1(σ
2 + ζ2)2 − k2(

σ4

2
+ ζ4) − k3χσ

2ζ

+ k4χ
4 +

1

4
χ4 ln

χ4

χ4
0

− δ

3
χ4 ln

σ2ζ

σ2
0ζ0

(15)

VSB =

(

χ

χ0

)2 [

m2
πfπσ + (

√
2m2

KfK − 1√
2
m2

πfπ)ζ

]

, (16)

where m∗
i = −gσiσ − gζiζ is the effective mass of the baryon of type i, with i = N,Σ,Λ,Ξ.

The thermodynamical potential of the grand canonical ensemble, Ω, per unit volume V at

given chemical potential µ and temperature T can be written as

Ω

V
= −Lvec − L0 − LSB − Vvac +

∑

i

γi

(2π)3

∫

d3k E∗
i (k)

(

fi(k) + f̄i(k)
)

−
∑

i

γi

(2π)3
µ∗

i

∫

d3k
(

fi(k) − f̄i(k)
)

. (17)

Here the vacuum energy (the potential at ρ = 0) has been substracted in order to obtain a

vanishing vacuum energy. γi is the spin-isospin degeneracy factor for baryon, i and E∗
i (k) =

√

k2
i +m∗

i
2 and µ∗

i = µi − giωω are the effective single particle energy and effective chemical

potential respectively. fi and f̄i are the thermal distribution functions for the baryons and

antibaryons given as

fi(k) =
1

eβ(E∗

i
(k)−µ∗

i
) + 1

, f̄i(k) =
1

eβ(E∗

i
(k)+µ∗

i
) + 1

. (18)

The mesonic field equations are determined by minimizing the thermodynamical potential

∂(Ω/V )

∂σ

∣

∣

∣

∣

MFT

= k0χ
2σ − 4k1(σ

2 + ζ2)σ − 2k2σ
3 − 2k3χσζ − 2

δχ4

3σ
+

7



+ m2
πfπ +

∑

i

∂m∗
i

∂σ
ρs

i = 0 , (19)

∂(Ω/V )

∂ζ

∣

∣

∣

∣

MFT

= k0χ
2ζ − 4k1(σ

2 + ζ2)ζ − 4k2ζ
3 − k3χσ

2 − δχ4

3ζ
+

+

[√
2m2

KfK − 1√
2
m2

πfπ

]

+
∑

i

∂m∗
i

∂ζ
ρs

i = 0 , (20)

∂(Ω/V )

∂ω

∣

∣

∣

∣

MFT

= −m2
ωω − 4g4

4ω
3 +

∑

i

giωρi = 0 , (21)

∂(Ω/V )

∂φ

∣

∣

∣

∣

MFT

= −m2
φφ− 8g4

4

(

Zφ

Zω

)2

φ3 +
∑

i

giφρi = 0 . (22)

In the above, ρs
i and ρi are the scalar and vector densities for the baryons at finite temper-

ature given as,

ρs
i = γi

∫

d3k

(2π)3

m∗
i

E∗
i

(

fi(k) + f̄i(k)
)

, ρi = γi

∫

d3k

(2π)3

(

fi(k) − f̄i(k)
)

. (23)

The energy density and the pressure follow from the Gibbs-Duhem relation, ǫ = Ω/V +

µiρi + TS and p = −Ω/V .

4. THE RELATIVISTIC HARTREE APPROXIMATION

The relativistic Hartree approximation takes into account the effects from the Dirac sea

through evaluating the baryonic tadpole diagrams. The interacting propagator for baryon

of type i is given by the Schwinger-Dyson equation

GH
i (p) = G0

i (p) +G0
i (p)ΣiG

H
i (p) , (24)

with G0
i (p) as the free propagator and Σi(p) as the self-energy consisting of the scalar and

vector parts as

Σi = ΣS
i − γµΣV

iµ . (25)

The formal solution of the Schwinger-Dyson equation is

[GH
i (p)]−1 = γ · p̄−m∗

i (26)

or equivalently,

GH
i (p) = (γµp̄µ +m∗

i )

{

1

p̄2 −m∗
i
2 + iǫ

+
πi

E∗
i (p)

[

δ(p̄0 − E∗
i (p))

eβ(E∗

i
(p)−µ∗

i
) + 1

+
δ(p̄0 + E∗

i (p))

eβ(E∗

i
(p)+µ∗

i
) + 1

]}

≡ (GH
i )F (p) + (GH

i )D(p) (27)
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where E∗
i (p) =

√

p2 +m∗
i
2, p̄ = p+ ΣV

i and m∗
i = mi + ΣS

i .

In the present investigation for the study of hot hyperonic matter, the baryons couple to

both the non-strange (σ) and strange (ζ) scalar fields, so that we have the scalar self energy

as

ΣS
i = −(gσiσ̃ + gζiζ̃) , (28)

where σ̃ = σ − σ0, ζ̃ = ζ − ζ0. The scalar self-energy ΣS
i can also be written as

ΣS
i = i

(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

∫

d4p

(2π)4
Tr[GF

i (p) +GD
i (p)]eip0η

≡ (ΣS
i )F + (ΣS

i )D . (29)

(ΣS
i )D is the density dependent part and is identical to the mean field contribution

(ΣS
i )D = −

(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

× γi

∫

d3p

(2π)3

m∗
i

E∗
i (p)

(fi(p) + f̄i(p))

= −
(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

ρS
i . (30)

The Feynman part (ΣS
i )F of the scalar part of the self-energy is divergent. We adopt a

dimensional regularization scheme to extract the convergent part by performing the integra-

tion in n dimensions. Finally one takes the limit n → 4 to extract the divergence which is

rendered finite by adding the appropriate counter terms. After regularization, we finally get

(ΣS
i )F =

γi

8π2

(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

[

m∗
i
3Γ(1 − n/2) + 2m∗

i
3 lnm∗

i

]

, (31)

with m∗
i = mi − gσiσ̃ − gζiζ̃. We renormalize the Feynman part of the self energy, as given

by the first term on the rhs. of (29) by adding the counter term

(

ΣS
i

)

CTC
= −

(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

3
∑

n=0

1

n!
(gσiσ̃ + gζiζ̃)

nβi
n+1 . (32)

The coefficients βi
n’s are fixed from a set of renormalization conditions. The first term in (32)

ensures that the tadpole contribution vanishes in vacuum. The second term fixes the masses

for the scalar fields σ and ζ fields to their vacuum values, in addition to ensuring that there

are no mixed terms (of the type σζ) introduced due to such RHA contributions. The last

two terms in (32) are chosen so that there are no cubic or quartic interaction contributions

in the scalar meson fields arising from contributions in RHA in vacuum. Explicitly, the

coefficients βi
n’s are given as

βi
1 =

γi

8π2
[m3

i Γ(1 − n/2) + 2m3
i lnmi] ,

9



βi
2 = − γi

8π2
[3m2

i Γ(1 − n/2) + 2m2
i (1 + 3 lnmi)] ,

βi
3 =

γi

8π2
[6miΓ(1 − n/2) + 10mi + 12mi lnmi)] ,

βi
4 = − γi

8π2
[6Γ(1 − n/2) + 22 + 12 lnmi)] . (33)

This yields additional contributions from the Dirac sea to the baryon self energy, as

(ΣS
i )F finite = (ΣS

i )F + (ΣS
i )CTC =

γi

4π2

(

g2
σi

m2
σ

+
g2

ζi

m2
ζ

)

×
[

m∗
i
3 ln

(

m∗
i

mi

)

+m2
i (mi −m∗

i ) −
5

2
mi(mi −m∗

i )
2 +

11

6
(mi −m∗

i )
3
]

. (34)

The above corresponds to the following counter terms in the Lagrangian as

LCTC =
∑

i

4
∑

n=1

βi
n

n!
(gσiσ̃ + gζiζ̃)

n, (35)

where the sum extends over all the baryon species i. The energy density can then be

evaluated to be

ǫRHA = ǫMFT + ∆ǫ , (36)

with the contribution to the energy density from the Dirac sea as

∆ǫ = −
∑

i

γi

16π2

[

m∗
i
4 ln
(m∗

i

mi

)

+m3
i (mi −m∗

i ) −
7

2
m2

i (mi −m∗
i )

2

+
13

3
mi(mi −m∗

i )
3 − 25

12
(mi −m∗

i )
4
]

. (37)

The field equations for the scalar meson fields are modified to

∂(Ω/V )

∂Φ

∣

∣

∣

∣

RHA

=
∂(Ω/V )

∂Φ

∣

∣

∣

∣

MFT

+
∑

i

∂m∗
i

∂Φ
∆ρs

i = 0 with Φ = σ, ζ , (38)

where the additional contribution to the nucleon scalar density is given as

∆ρs
i = − γi

4π2

[

m∗
i
3 ln

(

m∗
i

mi

)

+m2
i (mi −m∗

i ) −
5

2
mi(mi −m∗

i )
2 +

11

6
(mi −m∗

i )
3

]

. (39)

These make a refitting of some of the parameters necessary. First we have to account for the

change in the energy and the pressure, i.e. gNω and χ0 have to be refitted. Due to a change

in χ0 the parameters k0, k2 and k4 must be adapted to ensure that the vacuum equations

for σ, ζ and χ have minima at the vacuum expectation values of the fields. Table I shows

the parameters corresponding to the Mean-field and the Hartree approximations.
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Parameter Mean Field Hartree

g4 2.7 0 2.7 0

k1 1.4 1.4 1.4 1.4

gNω 13.24 10.74 10.61 9.45

gNρ 5.04 4.1 4.04 3.6

χ0 405.7 435.8 437.4 454.2

k3 -2.57 -1.95 -1.91 -1.56

k0 2.33 2.02 2 1.86

k2 -5.55 -5.55 -5.55 -5.55

k4 -0.23 -0.23 -0.23 -0.24

m∗
N/mN (ρ0) 0.62 0.7 0.73 0.76

mσ 485 578 583 637

TABLE I: Parameters for the Mean-Field and the Hartree Fit

5. VECTOR MESON MASSES IN THE MEDIUM

5.1. Mass modifications of ω and ρ -mesons

We now examine how the Dirac sea effects discussed in section 4 modify the masses of

the vector mesons (ω and ρ) due to their interaction with the in-medium nucleons. From

(5), the interaction can be written as

LNV = gNωωµψ̄Nγ
µψN + gNρ~ρµψ̄Nγ

µ~τψN , (40)

in terms of the renormalized couplings gNω and gNρ. Furthermore a tensor coupling is

introduced:

Ltensor = −gNV κV

2mN

[

ψ̄Nσµντ
aψN∂

νV µ
a

]

, (41)

where (gNV , κV ) = (gNω, κω) or (gNρ, κρ) for V µ
a = ωµ or ρµ

a , τa = 1 or ~τ , ~τ being the Pauli

matrices. The vector meson self energy is expressed in terms of the full nucleon propagator

(27) and is given by

Πµν
V (k) = −γIg

2
NV

i

(2π)4

∫

d4pTr
[

Γµ
V (k)GH(p)Γν

V (−k)GH(p+ k)
]

, (42)

where γI = 2 is the isospin degeneracy factor for nuclear matter, and, Γµ
V (k) = γµτa −

(κV /2mN)σµντa represents the meson-nucleon vertex function obtained from (40) and (41).
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For the ω meson, the tensor coupling is generally small in comparison to the vector coupling

to the nucleons [18] and is neglected in the present calculations.

We then have the meson-nucleon vertex functions as

Γµ(k) = γµ , for ω ,

Γµ(k) = γµ +
iκρ

2mN
σµαkα for ρ . (43)

After insertion of GH(p), the vector meson self energy separates into

Πµν(k) = Πµν
F (k) + Πµν

D (k) , (44)

where Πµν
F (k) is the vacuum polarization and describes the correction to the meson propaga-

tor due to coupling to baryon-antibaryon excitations of the Dirac sea and Πµν
D (k) describes

coupling to the particle-hole excitations of the Fermi sea. The Feynman part of the self

energy, Πµν
F (k), is divergent and has to be renormalized. After dimensional regularization

to separate the divergent part and using the subtraction procedure described in [17, 18, 34],

we obtain the following Πµν
F (k) for the ω and ρ mesons

Πω
F (k2) ≡ 1

3
Re(Πren

F )µ
µ = −g

2
Nω

π2
k2I1 (45)

Πρ
F (k2) = −

g2
Nρ

π2
k2

[

I1 +
m∗

Nκρ

2mN
I2 +

1

2

(

κρ

2mN

)2

(k2I1 +m∗
NI2)

]

, (46)

where

I1 =

∫ 1

0

dzz(1 − z) ln
[m∗

N
2 − k2z(1 − z)

mN
2 − k2z(1 − z)

]

, (47)

I2 =

∫ 1

0

dz ln
[m∗

N
2 − k2z(1 − z)

mN
2 − k2z(1 − z)

]

. (48)

The renormalization condition which has been used to obtain the ω-self energy is

Πω
F (k2)(m∗

N → mN) = 0 ensuring the vanishing of the vector self energy in vacuum. Due to

the tensor interaction in (43), the vacuum self energy for the ρ-meson is not renormalizable.

We have employed a phenomenological subtraction procedure [18] to extract the finite part

using the condition ∂nΠρ
F (k2)/∂(k2)n|m∗

N
→mN

= 0, with n = 0, 1, 2, ...∞.

The contribution from the Fermi sea is given as

ΠD(k0,k → 0) = −4g2
NV

π2

∫

p2dp F (|p|, m∗
N)
[

fFD(µ∗, T ) + f̄FD(µ∗, T )
]

, (49)
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with

F (|p|, m∗
N) =

1

ǫ∗(p)(4ǫ∗(p)2 − k2
0)

[

2

3
(2|p|2 + 3m∗

N
2) + k2

0

{

2m∗
N

( κV

2mN

)

+
2

3

( κV

2mN

)2

(|p|2 + 3m∗
N

2)
}

]

, (50)

where ǫ∗(p) = (p2 +m∗
N

2)1/2 is the effective energy of the nucleon. The effective mass of the

vector meson at rest is then obtained by solving the equation, with Π = ΠF + ΠD,

k2
0 −m2

V + ReΠ(k0,k = 0) = 0. (51)

5.2. Mass modification of φ - meson

The φ-meson, which does not couple to the nucleons, is modified due to the hyperon-

antihyperon excitations in the relativistic Hartree approximation. The mass of the φ-meson

in the medium is obtained as a solution of the dispersion relation given as [26],

k2
0 −m2

V +
∑

i

ReΠi(k0, ~k = 0) = 0. (52)

Using the hyperon-φ couplings as given in (6) the mass of the φ-meson is calculated.

6. RESULTS AND DISCUSSIONS

In this section, we discuss the findings of the present investigation for the properties of

the hadrons properties in a chiral SU(3) model. We investigate how the hadron properties

in mean field approximation are modified due to the effect of the vacuum polarizations in

relativistic Hartree approximation. Figure 1 shows the temperature and density dependence

of the pressure. The effect from the Dirac sea of the baryons through the relativistic Hartree

approximation is seen to lead to a softening of the equation of state for the hot hyperonic

matter. In figures 2 and 3 the baryon masses are shown as functions of temperature for

zero baryon density. Accounting for the baryonic Dirac sea effects is seen to give rise to

higher values for the baryon masses in the medium. This is related to the fact that these

contributions lead to a softening of the equation of state as illustrated in the figure 1.

However, note that the masses stay almost constant up to a temperature of around 160

MeV above which there is a drop of the masses in the hot matter. The modification of

the hyperon masses is smaller as compared to the nucleon mass because of their stronger

coupling to the strange condensate ζ , which shows much weaker temperature dependence

than the non-strange condensate σ as illustrated in 4. Especially, the Ξ mass is seen to stay

13
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FIG. 1: The equation of state in the mean field (MFT) (thick lines) and in RHA (thin lines) for

different temperatures and fs = 0 for the vector self-interaction coupling (a) g4=2.7 and (b) g4=0.

almost constant even up to a temperature of about 180 MeV. The presence of quartic self

interaction for the vector field enhances the mass modification as seen in figures 2 and 3.

This is because the vector field strength is attenuated leading to a larger effective chemical

potential and hence a larger thermal distribution function for the baryon. As a consequence

the contribution to baryon scalar self energy from the medium dependent part as given by

(30) becomes larger. This explains the smaller baryon mass for g4 6= 0 in the mean field

approximation. The qualitative features remain the same with additional contributions from

NN̄ fluctuations in RHA. Figures 5 and 6 illustrate the temperature and density dependence

of the non-strange (σ) and strange (ζ) scalar fields. The effective baryon masses as functions

of density, for different temperatures and zero net strangeness are shown in figures 7 -10.

Again, higher baryon masses are predicted if we take the quantum corrections of the Dirac

sea into account. This behaviour mirrors itself in the density dependence of the scalar fields

(figures 5-6).

Note that the masses of the baryons at finite densities first increases with temperature

up to around 170 MeV and then decreases. Such a behaviour of the nucleon mass increasing

with temperature was also observed earlier within the framework of the Walecka model by

Ko and Li [35] in a mean field calculation. This behaviour of the baryon self energy, given

by (30) in the mean field approximation can be understood in the following manner. The
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FIG. 2: Effective nucleon and Λ masses as functions of temperature in the mean field (MFT) and

in RHA for fs = 0 and ρB = 0 and for (a) g4=2.7 and (b) g4=0.
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FIG. 3: Effective Σ and Ξ masses as functions of temperature in the mean field (MFT) and in

RHA for fs = 0 and ρB = 0 and for (a) g4=2.7 and (b) g4=0.
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FIG. 4: The scalar fields as functions of temperature in the mean field (MFT) and in RHA for

fs = 0 and ρB = 0 and for (a) g4=2.7 and (b) g4=0.

thermal distribution functions have the effect of increasing the self energy as given by (30)

(hence decreasing the masses). However, at finite densities, for increasing temperatures,

there are contributions also from higher momenta thereby increasing the denominator of the

integrand in the rhs of (30) (and hence increasing the value for the effective baryon mass).

The competing effects arising from the thermal distribution functions and the contributions

from higher-momenta states give rise to the observed behaviour of the effective baryon

masses with temperature at finite densities. For temperatures of about 170 MeV one can

see that the scalar fields have nonzero fluctuations from the vacuum values even at zero

density, which indicates the existence of baryon-antibaryon pairs in the thermal bath. This

behaviour for nuclear matter at finite temperatures has also been known in the literature

[36, 37]. This leads to the baryon masses above this temperature to be different from the

vacuum values at zero baryon density.

The vector meson masses (ω and ρ) as modified by the interaction to the nucleons in the

thermal medium are plotted in figures 11 and 12. The effective vector meson masses arising

due to nucleon-antinucleon loop in the relativistic Hartree approximation are compared

to the mean field case. For the nucleon-rho couplings, the vector and tensor couplings

as obtained from the N-N forward dispersion relation [18, 20, 38] are used. The medium

modified vector meson masses are plotted in figures 11 and 12 with and without the quartic
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FIG. 5: The non-strange condensate as a function of density in the mean field (MFT) (thick lines)

and in RHA (thin lines) for different temperatures and fs = 0 and for (a) g4=2.7 and (b) g4=0.
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FIG. 6: The strange condensate as a function of density in the mean field (MFT) (thick lines) and

in RHA (thin lines) for different temperatures and fs = 0 and for (a) g4=2.7 and (b) g4=0.
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interaction for the vector fields. The increase of the nucleon masses with temperature at

finite densities is reflected as an increase in the vector meson masses as was also seen in Ref.

[35]. If we switch off the quartic self interaction, the vector meson masses have no density

and temperature dependence in MFT as seen from (11). In RHA, a significant reduction

of the ω and ρ masses due to the Dirac sea polarization is found up to around nuclear

saturation density. At higher densities, the density dependent part of the vector meson

self energy, describing the interaction with the Fermi sea fluctuations starts to be more

dominating, leading to increasing masses instead. But in the case of the ω mass, above 100

MeV the effect of the Fermi sea polarization seems not to be sufficient in order to overturn

the original decreasing tendency. For g4 6= 0 the vector meson masses increase monotonically

with density in the mean field case. The mean field value of the ω field increases with density

and consequently due to (11) the vector meson masses increase.

In RHA, the masses drop up to ρ0 but a finite value for g4 leads to a modified high density

behaviour. Above, ρ0, the masses increase with density at all temperatures. It is seen that

the density dependence dominates over the temperature dependence.

The medium modification for the vector meson φ in the hyperonic matter is plotted in

figure 13. One observes that the strange meson φ has smaller mass modifications compared

to the ω and ρ mesons. This is due to the fact that φ meson does not couple to the nucleons

and also, the hyperon masses are rather insensitive to the changes in the baryon densities as

may be seen in figures 8 - 10. One might note here that unlike the ω and ρ vector mesons,

where the presence of the quartic self interaction for the vector fields attenuates the drop of

the meson masses in relativistic Hartree approximation, the φ-mass has a larger drop when

g4 6= 0. The reason for this is that the nucleon-ω coupling is larger in the presence of this

interaction as can be seen from table I. Hence the hyperon-φ couplings, which are related

to gNω through the relation (6) are higher in value. This gives rise to a larger drop of the

φ mass due to the hyperon-antihyperon excitations in relativistic Hartree approximation.

The nonzero g4 gives rise to an increasing contribution to the φ mass as proportional to the

quadratic strength of the φ-field unlike the case of ω and ρ mesons where this is proportional

to the strength of the ω-field. Since the strength of the φ field is much smaller than that of

the ω, this increase in the φ-mass remains small compared to the drop due to the hyperon

sea. The strange meson (φ) mass modification observed as small compared to the ω and ρ

meson masses is in line with the earlier observations [8, 18, 39].
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FIG. 7: Effective nucleon mass as a function of density in the mean field (MFT) (thick lines) and

in RHA (thin lines) for different temperatures and fs = 0 for (a) g4=2.7 and (b) g4=0.
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FIG. 8: Effective Λ mass as a function of density in the mean field (MFT) and in RHA for different

temperatures and fs = 0 for (a) g4=2.7 and (b) g4=0.
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FIG. 9: Effective Σ mass as a function of density in the mean field (MFT) (thick lines) and in

RHA (thin lines) for different temperatures and fs = 0 for (a) g4=2.7 and (b) g4=0.
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FIG. 10: Effective Ξ masses as a function of density in the mean field (MFT) (thick lines) and in

RHA (thin lines) for different temperatures and fs = 0 for (a) g4=2.7 and (b) g4=0.
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FIG. 11: Effective ω mass as a function of density in the mean field (MFT) and in RHA for

different temperatures and fs = 0 and for (a) g4=2.7 and (b) g4=0.
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FIG. 12: Effective ρ mass as a function of density in the mean field (MFT) and in RHA for

different temperatures and fs = 0 for (a) g4=2.7 and (b) g4=0.
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FIG. 13: Effective φ meson mass in the mean field approximation and including the Hartree

contributions for (a) g4=2.7 and (b) g4=0.

7. SUMMARY

To summarize, in the present work, we have considered a chiral SU(3) model for the

description of the hot and strange hadronic matter. The effect of the baryonic vacuum po-

larizations has been taken into account in the relativistic Hartree approximation for study

of the hadronic properties. The coupling of the baryons to both nonstrange and strange

scalar fields modifies the scalar self energy and is taken into account while summing over the

baryonic tadpole diagrams in the relativistic Hartree approximation. The vector meson (ω

and ρ) masses are calculated in the thermal medium arising from the nucleon-antinucleon

loop and are seen to have large drops due to the Dirac sea contribution. However, the

strange vector meson, φ mass is seen to be much less modified due to the baryon Dirac sea,

as compared to the nonstrange vector mesons. The vector meson properties are directly

linked to the dilepton spectra in relativistic heavy ion collision experiments. It will thus be

worth investigating how the dilepton spectra are modified due to the medium modification

of the vector mesons. The hadron properties in the medium also modify the number den-

sities and hence would modify the particle ratios observed in relativistic heavy ion collision

experiments. These have been studied in the mean field approximation in the present chiral

SU(3) model [40] and it will be interesting to examine the effects of vacuum polarisations
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on the particle ratios. These and related problems are under investigation.
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[15] C. Ernst, S. A. Bass, M. Belkacem, H. Stöcker and W. Greiner, Phys. Rev. C 58, 447 (1998).

[16] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986); S. A. Chin, Ann. Phys. (N.

Y.) 108, 301 (1977).

[17] H. Shiomi and T. Hatsuda, Phys. Lett. B 334, 281 (1994).

[18] T. Hatsuda, H. Shiomi and H. Kuwabara, Prog. Theor. Phys. 95, 1009 (1996).

[19] H.-C. Jean, J. Piekarewicz and A. G. Williams, Phys. Rev. C 49, 1981 (1994); K. Saito, K.

Tsushima, A. W. Thomas, A. G. Williams, Phys. Lett. B 433, 243 (1998).

[20] Jan-e Alam, S. Sarkar, P. Roy, B. Dutta-Roy and B. Sinha, Phys. Rev. C 59, 905 (1999).

[21] J. A. Caillon, J. Labarsouque, Phys. Lett. B 331 19 (1993).

[22] S. Schramm, Phys. Rev. C 66 064310 (2002).

[23] P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, and W. Greiner,
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[27] A. Mishra, J. Reinhardt, H. Stöcker and W. Greiner, Phys. Rev. C 66, 064902 (2002).

[28] A. Mishra, P. K. Panda, S. Schramm, J. Reinhardt and W. Greiner, Phys. Rev. C 56, 1380

(1997); A. Mishra, P. K. Panda and W. Greiner, J. Phys. G 27, 1561 (2001); A. Mishra, P.

K. Panda and W. Greiner, J. Phys. G 28, 67 (2002).

[29] J. J. Sakurai, Currents and Mesons (University of Chicago Press, Chicago, 1969).

[30] S. Gasiorowicz and D. Geffen, Rev. Mod. Phys. 41, 531 (1969).

[31] P. K. Mitter and L. J. Swank, Nucl. Phys. B 8, 205 (1968).

[32] Y. Sugahara and H. Toki, Nucl. Phys. A 579, 557 (1994).

[33] J. Schechter, Phys. Rev. D 21, 3393 (1980).

[34] H. Kurasawa, T. Suzuki, Nucl. Phys. A 490 (1988) 571;

[35] G. Q. Li, C. M. Ko and G. E. Brown, Nucl. Phys. A 606, 568 (1996).

[36] R. J. Furnstahl and B. D. Serot, Phys. Rev. C 41, 262 (1990).

[37] J. Theis, G. Graebner, G. Buchwald, J. Maruhn, W. Greiner, J. Polonyi, Phys. Rev. D 28,

2286 (1983).

[38] W. Grein, Nucl. Phys. B 131, 255 (1977); W. Grein and P. Kroll, Nucl. Phys. A 338, 332

24

http://arxiv.org/abs/nucl-th/0302073


(1980).

[39] S. Pal, Song Gao, H. Stoecker and W. Greiner, Phys. Lett. B 465, 282 (1999).

[40] D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Lett. B 547,
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