288 research outputs found

    Particle Number Fluctuations in the Microcanonical Ensemble

    Full text link
    Particle number fluctuations are studied in the microcanonical ensemble. For the Boltzmann statistics we deduce exact analytical formulae for the microcanonical partition functions in the case of non-interacting massless neutral particles and charged particles with zero net charge. The particle number fluctuations are calculated and we find that in the microcanonical ensemble they are suppressed in comparison to the fluctuations in the canonical and grand canonical ensembles. This remains valid in the thermodynamic limit too, so that the well-known equivalence of all statistical ensembles refers to average quantities, but does not apply to fluctuations. In the thermodynamic limit we are able to calculate the particle number fluctuations in the system of massive bosons and fermions when the exact conservation laws of both the energy and charge are taken into account.Comment: REVTeX, 17 pages, 9 figures, v3: misprints a correcte

    Two dimensional modulational instability in photorefractive media

    Full text link
    We study theoretically and experimentally the modulational instability of broad optical beams in photorefractive nonlinear media. We demonstrate the impact of the anisotropy of the nonlinearity on the growth rate of periodic perturbations. Our findings are confirmed by experimental measurements in a strontium barium niobate photorefractive crystal.Comment: 8 figure

    A waveguide atom beamsplitter for laser-cooled neutral atoms

    Get PDF
    A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while guided by a magnetic-field potential. We generate our multimode-beamsplitter potential with two current-carrying wires on a glass substrate combined with an external transverse bias field. The atoms bend around several curves over a 1010-cm distance. A maximum integrated flux of 1.5105atoms/s1.5\cdot10^{5} \mathrm{atoms/s} is achieved with a current density of 5104Ampere/cm25\cdot10^{4} \mathrm{Ampere/cm^{2}} in the 100-μm\mathrm{\mu m} diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio

    Galactic bars: a look at the point of view of action variables

    Full text link
    Мы перевели результаты моделирования баров в N-body экспериментах на язык переменных действия JR, Lz и Jz. Для этого мы использовали пакет AGAMA и формализм, связанный с потенциалом Штеккеля. Переменные действия считались в меняющемся неосесимметричном потенциале модели на различные моменты эволюции бара. Мы обнаружили, что на поздних стадиях эволюции бара максимальные значения JR достигаются на его концах, после чего, при переходе к диску, JR монотонно убывает. Что касается Jz, то максимальные значения Jz фактически очерчивают контуры B/PS балджа, наиболее толстой части бара. Такое поведение переменных действия можно использовать для тестов по выявлению особенностей бара нашей Галактики на основе данных GAIA.We have translated the results of bar modeling in N-body simulations into the language of action variables JR, Lz and Jz. We used the AGAMA package and the formalism associated with the Steckel potential. Action variables were calculated in the changing non axisymmetric potential of the model at different moments of the bar evolution. We found that at the later stages of the bar evolution, the maximum values of JR are reached at its ends, after which, upon going to the disk, JR decreases monotonically. As for Jz, the maximum values of Jz actually outline the B/PS bulge, the thickest part of the bar. Such a behavior of the action variables can be used for tests to identify the features of the bar of our Galaxy based on GAIA data

    Classical 5D fields generated by a uniformly accelerated point source

    Full text link
    Gauge fields associated with the manifestly covariant dynamics of particles in (3,1)(3,1) spacetime are five-dimensional. In this paper we explore the old problem of fields generated by a source undergoing hyperbolic motion in this framework. The 5D fields are computed numerically using absolute time τ\tau-retarded Green-functions, and qualitatively compared with Maxwell fields generated by the same motion. We find that although the zero mode of all fields coincides with the corresponding Maxwell problem, the non-zero mode should affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure

    Multiplicity Fluctuations in Hadron-Resonance Gas

    Get PDF
    The charged hadron multiplicity fluctuations are considered in the canonical ensemble. The microscopic correlator method is extended to include three conserved charges: baryon number, electric charge and strangeness. The analytical formulae are presented that allow to include resonance decay contributions to correlations and fluctuations. We make the predictions for the scaled variances of negative, positive and all charged hadrons in the most central Pb+Pb (Au+Au) collisions for different collision energies from SIS and AGS to SPS and RHIC.Comment: 19 pages, 4 figure

    Wave function recombination instability in cold atom interferometers

    Full text link
    Cold atom interferometers use guiding potentials that split the wave function of the Bose-Einstein condensate and then recombine it. We present theoretical analysis of the wave function recombination instability that is due to the weak nonlinearity of the condensate. It is most pronounced when the accumulated phase difference between the arms of the interferometer is close to an odd multiple of PI and consists in exponential amplification of the weak ground state mode by the strong first excited mode. The instability exists for both trapped-atom and beam interferometers.Comment: 4 pages, 5 figure

    Direct observation of nanoscale interface phase in the superconducting chalcogenide Kx_{x}Fe2y_{2-y}Se2_2 with intrinsic phase separation

    Get PDF
    We have used scanning micro x-ray diffraction to characterize different phases in superconducting Kx_{x}Fe2y_{2-y}Se2_2 as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (Tc_c\sim32 K), phase separation temperature (Tps_{ps}\sim520 K) and iron-vacancy order temperature (Tvo_{vo}\sim580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below \sim300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the Tps_{ps} and Tc_c is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in Kx_{x}Fe2y_{2-y}Se2_2.Comment: 6 pages, 4 figure

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure

    Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging

    Get PDF
    We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified.Comment: 8 pages, 5 figure
    corecore