1,761 research outputs found
Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review
Yuan Xu, Jing-Yan Wang, Yang Zou, Xue-Wei Ma, Tian Meng College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of ChinaCorrespondence: Yuan Xu, Email [email protected]: Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.Keywords: IL-36, IL-37, IL-38, osteoarthritis, rheumatoid arthriti
Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators
CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA) was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production
Controlled synthesis of high-ortho-substitution phenol-formaldehyde resins
The relationship between the use of 19 kinds of metal catalysts and the proportion of ortho-ortho links of novolac resins was studied. The proportion of ortho-ortho links of novolac resins was characterized with Fourier transform infrared, H-1-NMR, and C-13-NMR. The effects of different catalysts and different reaction conditions, such as the molar ratio of phenol to formaldehyde, the pH value of the reaction, and the reaction time, were examined. Phenolformaldehyde resins were synthesized with a certain proportion of the ortho position through the adjustment of the reaction conditions. (c) 2005 Wiley Periodicals, Inc
Chalcogenide Glass-on-Graphene Photonics
Two-dimensional (2-D) materials are of tremendous interest to integrated
photonics given their singular optical characteristics spanning light emission,
modulation, saturable absorption, and nonlinear optics. To harness their
optical properties, these atomically thin materials are usually attached onto
prefabricated devices via a transfer process. In this paper, we present a new
route for 2-D material integration with planar photonics. Central to this
approach is the use of chalcogenide glass, a multifunctional material which can
be directly deposited and patterned on a wide variety of 2-D materials and can
simultaneously function as the light guiding medium, a gate dielectric, and a
passivation layer for 2-D materials. Besides claiming improved fabrication
yield and throughput compared to the traditional transfer process, our
technique also enables unconventional multilayer device geometries optimally
designed for enhancing light-matter interactions in the 2-D layers.
Capitalizing on this facile integration method, we demonstrate a series of
high-performance glass-on-graphene devices including ultra-broadband on-chip
polarizers, energy-efficient thermo-optic switches, as well as graphene-based
mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis
Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms. Theoretical calculations reveal that the empty d orbitals of iridium (Ir) sites can be reduced by interactions between the environmental electronegative C/N and Ir atoms. This balances the hydrogen adsorption/ desorption around the Ir sites, accelerating the related HER process. Remarkably, by anchoring a small amount of Ir nanoparticles (7.16 wt%) in nitrogenated carbon matrixes, the resulting catalyst exhibits significantly enhanced HER performance. This includs the smallest reported overpotential at 10 mA cm(-2) (4.5 mV), the highest mass activity at 10 mV (1.12 A mg(Ir)(-1)) and turnover frequency at 25 mV (4.21 H2 s(-1)) by far, outperforming Ir nanoparticles and commercial Pt/C
Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear
Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions
- …