464 research outputs found

    High-precision, large-domain three-dimensional manipulation of nano-materials for fabrication nanodevices

    Get PDF
    Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication

    Arrayed van der Waals Vertical Heterostructures based on 2D GaSe Grown by Molecular Beam Epitaxy

    Full text link
    Vertically stacking two dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures in wafer scale with an atomically-sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In-situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly-efficient photodetector arrays were fabricated based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a relatively high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust with a response time of 60 us. Importantly, the device shows no sign of degradation after 1 million cycles of operation. Our study establishes a new approach to produce controllable, robust and large-area 2D heterostructures and presents a crucial step for further practical applications

    An infectious clone of enterovirus 71(EV71) that is capable of infecting neonatal immune competent mice without adaptive mutations

    Get PDF
    Enterovirus 71 (EV71) is a major pathogen that causes hand, foot and mouth disease (HFMD), which is a life threatening disease in certain children. The pathogenesis of EV71-caused HFMD is poorly defined due to the lack of simple and robust animal models with severe phenotypes that recapitulate symptoms observed in humans. Here, we generated the infectious clone of a clinical isolate from a severe HFMD patient. Virus rescued from the cDNA clone was infectious in cell lines. When administrated intraperitoneally to neonatal ICR, BALB/c and C57 immune competent mice at a dosage of1.4 × 104 pfu per mouse, the virus caused weight loss, paralysis and death in the infected mice after 4-5 days of infection. In the infected mice, detectable viral replication was detected in various tissues such as heart, liver, brain, lung, kidney, small intestine, leg skeletal muscle and medulla oblongata. The histology of the infected mice included massive myolysis, glomerular atrophy, villous blunting in small intestine, widened alveolar septum, diminished alveolar spaces and lymphocytes infiltration into the lung. By using the UV-inactivated virus as a control, we elucidated that the virus first amplified in the leg skeletal muscle tissue and the muscle tissue served as a primary viral replication site. In summary, we generated a stable EV71 infectious clone that is capable of infecting neonatal immune competent mice without adaptive mutations and provide a simple, valuable animal model for the studies of EV71pathogenesis and therapy.</p

    Multiple Factors Drive Variation of Forest Root Biomass in Southwestern China

    Get PDF
    The roots linking the above-ground organs and soil are key components for estimating net primary productivity and carbon sequestration of forests. The patterns and drivers of root biomass in forest have not been examined well at the regional scale, especially for the widely distributed forest ecosystems in southwestern China. We attempted to determine the spatial patterns of root biomass (RB, Mg/ha), annual increment root biomass (AIRB, Mg/ha/year), ratio of root and above-ground (RRA), and the relative contributions of abiotic and biotic factors that drive the variation of root biomass. Forest biomass and multiple factors (climate, soil, forest types, and stand characteristics) of 318 plots in this region (790,000 km2) were analyzed in this research. The AB (the mean values for forest aboveground biomass per ha, Mg/ha), RB, AIRB, and RRA were 126 Mg/ha, 28 Mg/ha, 0.69 Mg/ha and 0.22, respectively. AB, RB, AIRB, and RRA varied across all the plots and forest types. Both RB and AIRB showed significant spatial patterns of distribution, while RRA did not show any spatial patterns of distribution. Up to 28.4% of variation in total of RB, AIRB, and RRA can be attributed to the climate, soil, and stand characteristics. The explained or contribution rates of climate, soil, and stand characteristics for variation of whole forest root biomass were 6.7%, 16.9%, and 10.9%, respectively. Path analysis in structural equation model (SEM) indicated the direct influence of stand age on RB. AIRB was greater than that of the other factors. Climate, soil and stand characteristics in different forest types could explain 9.7%–96.1%, 15.4%–96.4%, and 36.7%–99.4% of variations in RB, AIRB, and RRA, respectively, which suggests that the multiple factors may be important in explaining the variations in forest root biomass. The results of the analysis of root biomass per ha, annual increment of root biomass per ha, and ratio of root and above-ground in the seven forest types categorized by climate, soil, and stand characteristics may be used for accurately determining C sequestration by the forest root and estimating forest biomass in this region

    Trefoil Factor 3, Cholinesterase and Homocysteine: Potential Predictors for Parkinson\u27s Disease Dementia and Vascular Parkinsonism Dementia in Advanced Stage

    Get PDF
    Trefoil factor 3 (TFF3), cholinesterase activity (ChE activity) and homocysteine (Hcy) play critical roles in modulating recognition, learning and memory in neurodegenerative diseases, such as Parkinson\u27s disease dementia (PDD) and vascular parkinsonism with dementia (VPD). However, whether they can be used as reliable predictors to evaluate the severity and progression of PDD and VPD remains largely unknown. METHODS: We performed a cross-sectional study that included 92 patients with PDD, 82 patients with VPD and 80 healthy controls. Serum levels of TFF3, ChE activity and Hcy were measured. Several scales were used to rate the severity of PDD and VPD. Receivers operating characteristic (ROC) curves were applied to map the diagnostic accuracy of PDD and VPD patients compared to healthy subjects. RESULTS: Compared with healthy subjects, the serum levels of TFF3 and ChE activity were lower, while Hcy was higher in the PDD and VPD patients. These findings were especially prominent in male patients. The three biomarkers displayed differences between PDD and VPD sub-groups based on genders and UPDRS (III) scores\u27 distribution. Interestingly, these increased serum Hcy levels were significantly and inversely correlated with decreased TFF3/ChE activity levels. There were significant correlations between TFF3/ChE activity/Hcy levels and PDD/VPD severities, including motor dysfunction, declining cognition and mood/gastrointestinal symptoms. Additionally, ROC curves for the combination of TFF3, ChE activity and Hcy showed potential diagnostic value in discriminating PDD and VPD patients from healthy controls. CONCLUSIONS: Our findings suggest that serum TFF3, ChE activity and Hcy levels may underlie the pathophysiological mechanisms of PDD and VPD. As the race to find biomarkers or predictors for these diseases intensifies, a better understanding of the roles of TFF3, ChE activity and Hcy may yield insights into the pathogenesis of PDD and VPD

    Modeling and Analyzing Operational Decision-Making Synchronization of C2 Organization in Complex Environment

    Get PDF
    In order to improve capability of operational decision-making synchronization (ODMS) in command and control (C2) organization, the paper puts forward that ODMS is the negotiation process of situation cognition with three phases about “situation cognition, situation interaction and decision-making synchronization” in complex environment, and then the model and strategies of ODMS are given in quantity. Firstly, measure indexes of three steps above are given in the paper based on the time consumed in negotiation, and three patterns are proposed for negotiating timely in high quality during situation interaction. Secondly, the ODMS model with two stages in continuous changing situation is put forward in the paper, and ODMS strategies are analyzed within environment influence and time restriction. Thirdly, simulation cases are given to validate the process of ODMS under different continuous changing situations the results of this model are better than the other previous models to fulfill the actual restrictions, and the process of ODMS can be adjusted more reasonable for improving the capability of ODMS. Then we discuss the case and summarize the influence factors of ODMS in the C2 organization as organization structure, shared information resources, negotiation patterns, and allocation of decision rights

    Diazotrophic community in the sediments of Poyang Lake in response to water level fluctuations

    Get PDF
    Water level fluctuations (WLFs) are typical characteristic of floodplain lakes and dominant forces regulating the structure and function of lacustrine ecosystems. The sediment diazotrophs play important roles in contributing bioavailable nitrogen to the aquatic environment. However, the relationship between the diazotrophic community and WLFs in floodplain lakes is unknown. In this paper, we carried out a comprehensive investigation on the alpha diversity, abundance, composition and co-occurrence network of the sediment diazotrophs during different water level phases in Poyang Lake. There were no regular variation patterns in the alpha diversity and abundance of the sediment diazotrophs with the water level phase transitions. The relative abundance of some diazotrophic phyla (including Alphaproteobacteria, Deltaproteobacteri, Euryarchaeota, and Firmicutes) and genera (including Geobacter, Deferrisoma, Desulfuromonas, Rivicola, Paraburkholderia, Methylophilus, Methanothrix, Methanobacterium, and Clostridium) was found to change with the water level phase transitions. The results of ANOSIM, PerMANOVA, and DCA at the OTU level showed that the diazotrophic community structure in the low water level phase was significantly different from that in the two high water level phases, while there was no significant difference between the two high water level phases. These results indicated that the diazotrophic community was affected by the declining water level in terms of the composition, while the rising water level contributed to the recoveries of the diazotrophic community. The diazotrophs co-occurrence network was disrupted by the declining water level, but it was strengthened by the rising water level. Moreover, redundancy analysis showed that the variation of the diazotrophic community composition was mostly related to sediment total nitrogen (TN) and total phosphorous (TP). Interestingly, the levels of sediment TN and TP were also found to vary with the water level phase transitions. Therefore, it might be speculated that the WLFs may influence the sediment TN and TP, and in turn influence the diazotrophic community composition. These data can contribute to broadening our understanding of the ecological impacts of WLFs and the nitrogen fixation process in floodplain lakes
    corecore