7 research outputs found

    Experimental Study on the Interrelationship between the Moisture Content and Drying Shrinkage of Autoclaved Aerated Concrete Wallboard

    No full text
    Autoclaved aerated concrete wallboard (AACW) has been widely used as a building envelope component in the infill walls of frame structures, which has broad prospects for development and utilization. However, the cracking of AACW has become a pressing problem, and this problem needs be solved or relieved effectively. We need an effective control method to reduce the cracking problem of AACW. It is necessary to study the interrelationship between the moisture content and the dry shrinkage of AACW. In this paper, a moisture content test and a drying shrinkage test of AACW were conducted, to understand the effect of the moisture content on the drying shrinkage performance of AACW. In addition, the moisture content of AACW with time was explored, and changes in the dry shrinkage value of AACW with the moisture content of AACW were obtained. According to the results and the conditions and the hypothesis of the test, the drying shrinkage value of AACW increases with time, and the drying shrinkage speed was fast in the early stage and tended to be stable in the later stage. In AACW, the drying shrinkage value and the relative humidity have a notable negative correlation. In addition, there was a positive correlation between the drying shrinkage value and the initial moisture content and the ambient temperature. When the AACW lost water from its initial moisture content to the equilibrium moisture content, the accumulated dry shrinkage value of AACW increased with the water loss. Moreover, a time-varying model of the moisture content and a prediction model of the equilibrium moisture content of AACW were established, and time-varying models of the drying shrinkage value of AACW with different initial moisture contents were proposed. The results provide a scientific basis for the reasonable maintenance and profitable control of drying shrinkage cracking of AACW

    Emerging charge transfer in self-coupled polymorphs for promoting charge-carrier-involved photocatalysis

    No full text
    © 2020 Elsevier B.V. Heterostructure construction has been regarded as a feasible pathway for nanomaterial fabrication towards optimized properties. Despite impressive investigations on heterostructure fabrication, assembling distinct polymorphs to form heterojunction has seldom been focused on relevant aspects. In this work, we demonstrated tunable localized surface plasmon resonance (LSPR) by Cu2S/CuS polymorphs via cation-triggered self-assembling on SnS2 substrates. During the transformation, the forming of covellite phase proceeds through cation exchange, while the simultaneous formation of chalcocite phase was achieved by the variation of the redox states of the anion framework. Furthermore, the formed polymorphs with optimized proportion on SnS2 substrates exhibited enhanced charge-carrier-involved processes by intrinsic band alignment in distinct polymorphs, resulting in excellent photocatalytic performances compared with those single-phase dominant copper sulfides on substrates. We thus hope this controllable nanostructure fabrication with distinctive properties could provide some useful hints for photo-electrochemistry applications

    Soil Fungal Diversity and Functionality Changes Associated with Multispecies Restoration of <i>Pinus massoniana</i> Plantation in Subtropical China

    No full text
    Soil fungi play a critical role in the carbon and nutrient cycling of forest ecosystems. Identifying the composition of soil fungi in response to the broadleaf restoration of Pinus massoniana plantation is essential for exploring the mechanistic linkages between tree species and ecological processes, but remains unexplored. We compared the shifts in soil fungal diversity and guilds by high–throughput sequencing between two P. massoniana plantations at different stand ages, two modes of restoration with broadleaf trees, and a secondary forest in subtropical China. We found that soil fungal taxonomic and functional compositions significantly differed among forests. The highest Chao 1, Shannon, and phylogenetic diversity indices were consistently observed in the two P. massoniana monocultures, followed by the two modes of broadleaf mixing, and the secondary forests. Fungal communities transitioned from Ascomycota-dominated at P. massoniana plantations to Basidiomycota-dominated at other forests in the topsoil. Furthermore, saprotrophs and symbiotrophs were favoured in plantations and secondary forests, respectively. Soil pH exerted the most significant effect on the relative abundance of Ascomycota and Rozellomycota, as well as the saprotrophs. Moreover, the dominant phyla of Ascomycota, Mucoromycota, and Rozellomycota were negatively related to soil microbial biomass nitrogen, ammonium nitrogen, and total nitrogen contents; however, Mortierellomycota benefited from the elevated soil ammonium nitrogen content. On the other hand, soil nitrate nitrogen and available phosphorus contents strongly and negatively influenced the ectomycorrhizal fungi, while the other fungal guilds were mainly affected by soil pH. Our findings guide an evaluation of the consequences of forest restoration and contribute to an improved understanding of the mechanisms behind soil biogeochemical cycling in subtropical forest ecosystems

    Insights into the Genetic Determination of the Autotetraploid Potato Plant Height

    No full text
    Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes

    Litter decomposition and nutrient release are faster under secondary forests than under Chinese fir plantations with forest development

    No full text
    Abstract In terrestrial ecosystems, leaf litter is the main source of nutrients returning to the soil. Understanding how litter decomposition responds to stand age is critical for improving predictions of the effects of forest age structure on nutrient availability and cycling in ecosystems. However, the changes in this critical process with stand age remain poorly understood due to the complexity and diversity of litter decomposition patterns and drivers among different stand ages. In this study, we examined the effects of stand age on litter decomposition with two well-replicated age sequences of naturally occurring secondary forests and Chinese fir (Cunninghamia lanceolata) plantations in southern China. Our results showed that the litter decomposition rates in the secondary forests were significantly higher than those in the Chinese fir plantations of the same age, except for 40-year-old forests. The litter decomposition rate of the Chinese fir initially increased and then decreased with stand age, while that of secondary forests gradually decreased. The results of a structural equation model indicated that stand age, litter quality and microbial community were the primary factors driving nutrient litter loss. Overall, these findings are helpful for understanding the effects of stand age on the litter decomposition process and nutrient cycling in plantation and secondary forest ecosystems

    Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction

    No full text
    Abstract The photoreduction of carbon dioxide (CO2) into renewable synthetic fuels is an attractive approach for generating alternative energy feedstocks that may compete with and eventually displace fossil fuels. However, it is challenging to accurately trace the products of CO2 photoreduction on account of the poor conversion efficiency of these reactions and the imperceptible introduced carbon contamination. Isotope-tracing experiments have been used to solve this problem, but they frequently yield false-positive results because of improper experimental execution and, in some cases, insufficient rigor. Thus, it is imperative that accurate and effective strategies for evaluating various potential products of CO2 photoreduction are developed for the field. Herein, we experimentally demonstrate that the contemporary approach toward isotope-tracing experiments in CO2 photoreduction is not necessarily rigorous. Several examples of where pitfalls and misunderstandings arise, consequently making isotope product traceability difficult, are demonstrated. Further, we develop and describe standard guidelines for isotope-tracing experiments in CO2 photoreduction reactions and then verify the procedure using some reported photoreduction systems
    corecore