46 research outputs found

    PP-MeT: a Real-world Personalized Prompt based Meeting Transcription System

    Full text link
    Speaker-attributed automatic speech recognition (SA-ASR) improves the accuracy and applicability of multi-speaker ASR systems in real-world scenarios by assigning speaker labels to transcribed texts. However, SA-ASR poses unique challenges due to factors such as speaker overlap, speaker variability, background noise, and reverberation. In this study, we propose PP-MeT system, a real-world personalized prompt based meeting transcription system, which consists of a clustering system, target-speaker voice activity detection (TS-VAD), and TS-ASR. Specifically, we utilize target-speaker embedding as a prompt in TS-VAD and TS-ASR modules in our proposed system. In constrast with previous system, we fully leverage pre-trained models for system initialization, thereby bestowing our approach with heightened generalizability and precision. Experiments on M2MeT2.0 Challenge dataset show that our system achieves a cp-CER of 11.27% on the test set, ranking first in both fixed and open training conditions

    Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping

    Get PDF
    Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level.Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing.Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit.Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics

    Anti-Forensics of Image Contrast Enhancement Based on Generative Adversarial Network

    No full text
    In the multimedia forensics community, anti-forensics of contrast enhancement (CE) in digital images is an important topic to understand the vulnerability of the corresponding CE forensic method. Some traditional CE anti-forensic methods have demonstrated their effective forging ability to erase forensic fingerprints of the contrast-enhanced image in histogram and even gray level cooccurrence matrix (GLCM), while they ignore the problem that their ways of pixel value changes can expose them in the pixel domain. In this paper, we focus on the study of CE anti-forensics based on Generative Adversarial Network (GAN) to handle the problem mentioned above. Firstly, we exploit GAN to process the contrast-enhanced image and make it indistinguishable from the unaltered one in the pixel domain. Secondly, we introduce a specially designed histogram-based loss to enhance the attack effectiveness in the histogram domain and the GLCM domain. Thirdly, we use a pixel-wise loss to keep the visual enhancement effect of the processed image. The experimental results show that our method achieves high anti-forensic attack performance against CE detectors in the pixel domain, the histogram domain, and the GLCM domain, respectively, and maintains the highest image quality compared with traditional CE anti-forensic methods

    Design and Fabrication of a Tunable Optofluidic Microlens Driven by an Encircled Thermo-Pneumatic Actuator

    No full text
    This paper presents the design, simulation, fabrication, assembly, and testing of a miniature thermo-pneumatic optofluidic lens. The device comprises two separate zones for air heating and fluid pressing on a flexible membrane. A buried three-dimensional spiral microchannel connects the two zones without pumps or valves. The three-dimensional microfluidic structure is realized using a high-resolution three-dimensional printing technique. Multi-physics finite element simulations are introduced to assess the optimized air chamber design and the low-temperature gradient of the optical liquid. The tunable lens can be operated using a direct-current power supply. The temperature change with time is measured using an infrared thermal imager. The focal length ranges from 5 to 23 mm under a maximum voltage of 6 V. Because of the small size and robust actuation scheme, the device can potentially be integrated into miniature micro-optics devices for the fine-tuning of focal lengths

    Protocol for efficient and self-healing near-infrared perovskite light-emitting diodes.

    No full text
    Preparation of highly efficient and stable perovskite light-emitting diodes (PeLEDs) with reproducible device performance is challenging. This protocol describes steps for fabrication of high-performance and self-healing PeLEDs. These include instructions for synthesis of charge-transporting zinc oxide (ZnO) nanocrystals, step-by-step device fabrication, and control over self-healing of the degraded devices. For complete details on the use and execution of this protocol, please refer to Teng et al. (2021).Funding agencies: RC Starting Grant (no. 717026), the Swedish Energy AgencyEnergimyndigheten (no. 48758-1), and the Swedish Government Strategic Research Area in Mate-rials Science on Functional Materials Linko ̈ ping University (Faculty Grant SFO-Mat-LiU no. 2009-00971). Y.Z. and B.S. also thank the support from Macau SAR (file no. 0044/2021/A)</p

    Modulating the Electronic Structure of FeCo Nanoparticles in N-Doped Mesoporous Carbon for Efficient Oxygen Reduction Reaction

    No full text
    The development of highly efficient and stable oxygen reduction electrocatalysts and revealing their underlying catalytic mechanism are crucial in expanding the applications of metal-air batteries. Herein, an excellent FeCo alloy nanoparticles (NPs)-decorated N-doped mesoporous carbon electrocatalyst (FeCo/NC) for oxygen reduction reaction, prepared through the pyrolysis of a dual metal containing metal-organic framework composite scaffold is reported. Benefiting from the highly exposed bimetal active sites and the carefully designed structure, the Fe0.25Co0.75/NC-800 catalyst exhibits a promising electrocatalytic activity and a superior durability, better than those of the state-of-the-art catalysts. Suggested by both the X-ray absorption fine structures and the density functional theoretical calculation, the outstanding catalytic performance is originated from the synergistic effects of the bimetallic loading in NC catalysts, where the electronic modulation of the Co active sites from the nearby Fe species leads to an optimized binding strength for reaction intermediates. This work demonstrates a class of highly active nonprecious metals electrocatalysts and provides valuable insights into investigating the structure–performance relationship of transition metal-based alloy catalysts.</p

    Solution-Mediated Polymorphic Transformation: From Amorphous to Crystals of Disodium Guanosine 5′-Monophosphate in Ethanol

    No full text
    Solvent-mediated transformation of disodium guanosine 5′-monophosphate (5′-GMPNa<sub>2</sub>) from amorphous to hydrated crystal phases was studied. The SMT process is dominated by the dissolution of the amorphous form and nucleation and growth of the crystal polymorph. The kinetic estimation based on population balance equation was carried out according to experimental data, including polymorphic fraction in the solid phase, solute concentration, and crystal size distribution. Furthermore, independent seeded batch experiments were carried out to estimate the kinetic parameters. The experimental data showed that the nucleation and growth of the crystal polymorph occurred shortly after the dissolution of the amorphous form. The estimated growth, nucleation, and dissolution rates indicated that the solution-mediated transformation was governed by the nucleation and growth of crystal polymorph. We believe that the results hold great importance toward understanding the transformation process of 5′-GMPNa<sub>2</sub>, which provides theoretical guidance for producing its specific forms, and possibly those for other pharmaceuticals and chemicals as well
    corecore