55 research outputs found

    Probing the endosperm gene expression landscape in Brassica napus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In species with exalbuminous seeds, the endosperm is eventually consumed and its space occupied by the embryo during seed development. However, the main constituent of the early developing seed is the liquid endosperm, and a significant portion of the carbon resources for the ensuing stages of seed development arrive at the embryo through the endosperm. In contrast to the extensive study of species with persistent endosperm, little is known about the global gene expression pattern in the endosperm of exalbuminous seed species such as crucifer oilseeds.</p> <p>Results</p> <p>We took a multiparallel approach that combines ESTs, protein profiling and microarray analyses to look into the gene expression landscape in the endosperm of the oilseed crop <it>Brassica napus</it>. An EST collection of over 30,000 entries allowed us to detect close to 10,000 unisequences expressed in the endosperm. A protein profile analysis of more than 800 proteins corroborated several signature pathways uncovered by abundant ESTs. Using microarray analyses, we identified genes that are differentially or highly expressed across all developmental stages. These complementary analyses provided insight on several prominent metabolic pathways in the endosperm. We also discovered that a transcription factor <it>LEAFY COTYLEDON </it>(<it>LEC1</it>) was highly expressed in the endosperm and that the regulatory cascade downstream of <it>LEC1 </it>operates in the endosperm.</p> <p>Conclusion</p> <p>The endosperm EST collection and the microarray dataset provide a basic genomic resource for dissecting metabolic and developmental events important for oilseed improvement. Our findings on the featured metabolic processes and the <it>LEC1 </it>regulatory cascade offer new angles for investigation on the integration of endosperm gene expression with embryo development and storage product deposition in seed development.</p

    Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions

    Get PDF
    Background: Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine. Results: Plant LPCATs were expressed in yeast and biochemically characterized. Conclusion: LPCATs can edit acyl composition of phosphatidylcholine through their combined forward and reverse reactions. Significance: Plant LPCATs play a role in editing both sn-positions of PC and remove ricinoleic acid with high selectivity from this lipid

    Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    Get PDF
    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content

    Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space.</p> <p>Results</p> <p>We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (<it>Plasmodium chabaudi</it>), systemic acquired resistance in <it>Arabidopsis thaliana</it>, similarities and differences between inner and outer cotyledon in <it>Brassica napus </it>during seed development, and to <it>Brassica napus </it>whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples.</p> <p>Conclusions</p> <p>Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.</p

    Endosperm–Embryo Communications: Recent Advances and Perspectives

    No full text
    Seed maturation depends on well-coordinated communications between the processes of endosperm and embryo development. The endosperm is considered to be destined to support embryo development and the timing of endosperm cellularization is critical for embryo growth. Recent findings suggest that the endosperm development and the onset of embryo maturation are two independent processes during seed development. Meanwhile, it is lately reported that several mobile regulators originating from the endosperm are needed to ensure proper embryo growth and seed maturation. In this opinion article, we highlight processes on how endosperm communicates with embryo during seed development and discuss some intriguing questions in light of the latest advancements

    Adjustments of lipid pathways in plant adaptation to temperature stress

    No full text
    Modulation of membrane lipid composition under varying environmental conditions is an important part of plant stress adaptation. Most notably, proportional changes of lipid composition in response to temperature changes are a major cellular response to requirements of membrane fluidity adjustment. In higher plants, synthesis of glycerolipids is accomplished by 2 major pathways, the prokaryotic and eukaryotic pathway, located in the chloroplast and the endoplasmic reticulum (ER), respectively. Recently, we systematically investigated the re-adjustments of glycerolipid pathways under temperature stress at the metabolite and transcript levels using 3 plant species with distinct lipid profiles. The relative contributions of 2 pathways and lipid channeling from the ER and chloroplast were both observed in plants under temperature stress. Potential factors controlling the lipid flux were identified through transcriptome analysis.Peer reviewed: YesNRC publication: Ye
    corecore