32 research outputs found

    pH-Sensitive Chitosan–Heparin Nanoparticles for Effective Delivery of Genetic Drugs into Epithelial Cells

    Get PDF
    Chitosan has been extensively studied as a genetic drug delivery platform. However, its efficiency is limited by the strength of DNA and RNA binding. Expecting a reduced binding strength of cargo with chitosan, we proposed including heparin as a competing polyanion in the polyplexes. We developed chitosan–heparin nanoparticles by a one-step process for the local delivery of oligonucleotides. The size of the polyplexes was dependent on the mass ratio of polycation to polyanion. The mechanism of oligonucleotide release was pH-dependent and associated with polyplex swelling and collapse of the polysaccharide network. Inclusion of heparin enhanced the oligonucleotide release from the chitosan-based polyplexes. Furthermore, heparin reduced the toxicity of polyplexes in the cultured cells. The cell uptake of chitosan–heparin polyplexes was equal to that of chitosan polyplexes, but heparin increased the transfection efficiency of the polyplexes two-fold. The application of chitosan–heparin small interfering RNA (siRNA) targeted to vascular endothelial growth factor (VEGF) silencing of ARPE-19 cells was 25% higher. Overall, chitosan–heparin polyplexes showed a significant improvement of gene release inside the cells, transfection, and gene silencing efficiency in vitro, suggesting that this fundamental strategy can further improve the transfection efficiency with application of non-viral vectors

    TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research

    Get PDF
    Reports of tattoo-associated risks boosted the interest in tattoo pigment toxicity over the last decades. Nonetheless, the influence of tattoo pigments on skin homeostasis remains largely unknown. In vitro systems are not available to investigate the interactions between pigments and skin. Here, we established TatS, a reconstructed human full-thickness skin model with tattoo pigments incorporated into the dermis. We mixed the most frequently used tattoo pigments carbon black (0.02 mg/ml) and titanium dioxide (TiO2, 0.4 mg/ml) as well as the organic diazo compound Pigment Orange 13 (0.2 mg/ml) into the dermis. Tissue viability, morphology as well as cytokine release were used to characterize TatS. Effects of tattoo pigments were compared to monolayer cultures of human fibroblasts. The tissue architecture of TatS was comparable to native human skin. The epidermal layer was fully differentiated and the keratinocytes expressed occludin, filaggrin and e-cadherin. Staining of collagen IV confirmed the formation of the basement membrane. Tenascin C was expressed in the dermal layer of fibroblasts. Although transmission electron microscopy revealed the uptake of the tattoo pigments into fibroblasts, neither viability nor cytokine secretion was altered in TatS. In contrast, TiO2 significantly decreased cell viability and increased interleukin-8 release in fibroblast monolayers. In conclusion, TatS emulates healed tattooed human skin and underlines the advantages of 3D systems over traditional 2D cell culture in tattoo pigment research. TatS is the first skin model that enables to test the effects of pigments in the dermis upon tattooing

    Automated Real-Time Tumor Pharmacokinetic Profiling in 3D Models: A Novel Approach for Personalized Medicine

    Get PDF
    Cancer treatment often lacks individual dose adaptation, contributing to insufficient efficacy and severe side effects. Thus, personalized approaches are highly desired. Although various analytical techniques are established to determine drug levels in preclinical models, they are limited in the automated real-time acquisition of pharmacokinetic profiles. Therefore, an online UHPLC-MS/MS system for quantitation of drug concentrations within 3D tumor oral mucosa models was generated. The integration of sampling ports into the 3D tumor models and their culture inside the autosampler allowed for real-time pharmacokinetic profiling without additional sample preparation. Docetaxel quantitation was validated according to EMA guidelines. The tumor models recapitulated the morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel treatment. The administration of four different docetaxel concentrations resulted in comparable courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in 3D tumor models without any sample preparation. The inclusion of patient-derived tumor cells into our models may further optimize the pharmacotherapy of cancer patients by efficiently delivering personalized data of the target tissue

    Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism

    Get PDF
    UV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application

    Acclimation in plants – the Green Hub consortium

    Get PDF
    Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to ‘smart breeding’ methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast‐related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Acclimation in plants - the Green Hub consortium

    Get PDF
    Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted

    A reconstructed human skin model containing macrophages to set up a delayed wound healing model of cutaneous leishmaniasis

    No full text
    Cutaneous leishmaniasis (CL) is a vector-borne neglected disease caused by protozoan parasites of the genus Leishmania. Disfiguring and socially stigmatizing skin lesions develop at the bite site of the parasite-infected female sand fly [1]. Tissue damage and disease in CL are primarily caused by an excessive host immune response against the intracellular infection of dermal macrophages [2]. The dermal lesions persist for months or even years, but eventually heal on their own [3]. Treatment of CL is problematic, as long series of painful injections with the toxic pentavalent antimonials remain the standard therapy [1] and lesions are left alone to self-cure with the risk of secondary bacterial or fungal infection. New therapies for CL and CL lesions are urgently needed. Therefore, realistic CL lesion models are essential as a predictive experimental platform to identify more effective topical strategies. To that aim we integrated for the first time in vitro-generated M1 polarized macrophages differentiated from the human monocytic THP‐1 cell line into reconstructed human skin (RHS). THP-1 derived macrophages were localized in the RHS dermal compartment and distributed homogenously in accordance with native human skin. Standardized circular wounds were made with a 18 gauge blunt tip needle or by punch biopsy. In order to impair wound healing, wounded RHS was stimulated with intradermal application (for needles) or drops (for punch wounds) of IFN-Îł in combination with LPS and/or hydrocortisone. Wound healing was monitored on days 1, 3 and 7 after wounding by histological examination of RHS. Immunohistochemical (Ki67, K14, tenascin-C, laminin 5, α‐SMA) and pro-inflamma ory cytokine analyses were performed pre‐ and post‐skin wound and stimulation, to increase the characterization of the model and to assess the effects of IFN-Îł, LPS and hydrocortisone in wound healing RHS models. Early in healing, IFN-Îł-LPS-hydrocortisone wounds displayed reduced proliferation and re-epithelialisation and heightened inf lammatory response compared with control wounds. H&Estained sections showed increased epidermal thickness and a lack of dermal epidermal junction in the wound zone. In summary, we integrated functional THP-1 derived macrophages into RHS and induced a delayed wound healing to provide a unique experimental test platform to evaluate the effects of new topical treatments.Fil: Schilrreff, Priscila. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Zoschke, Christian. Freie UniversitĂ€t Berlin; AlemaniaFil: Morilla, MarĂ­a JosĂ©. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Romero, Eder Lilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Schafer Korting, Monika. Freie UniversitĂ€t Berlin; Alemania22nd European 3Rs Congress; 9th European Society for Alternatives to Animal Testing CongressLinzAustriaEuropean Society for Alternatives to Animal Testin

    TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research

    No full text
    Reports of tattoo-associated risks boosted the interest in tattoo pigment toxicity over the last decades. Nonetheless, the influence of tattoo pigments on skin homeostasis remains largely unknown. In vitro systems are not available to investigate the interactions between pigments and skin. Here, we established TatS, a reconstructed human full-thickness skin model with tattoo pigments incorporated into the dermis. We mixed the most frequently used tattoo pigments carbon black (0.02 mg/ml) and titanium dioxide (Ti

    Effect of Poly(L-lysine) and Heparin Coatings on the Surface of Polyester-Based Particles on Prednisolone Release and Biocompatibility

    Get PDF
    A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(Δ-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations
    corecore